Predicting Human Mobility via Variational Attention

Qiang Gao, Fan Zhou, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, Fengli Zhang
{"title":"Predicting Human Mobility via Variational Attention","authors":"Qiang Gao, Fan Zhou, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, Fengli Zhang","doi":"10.1145/3308558.3313610","DOIUrl":null,"url":null,"abstract":"An important task in Location based Social Network applications is to predict mobility - specifically, user's next point-of-interest (POI) - challenging due to the implicit feedback of footprints, sparsity of generated check-ins, and the joint impact of historical periodicity and recent check-ins. Motivated by recent success of deep variational inference, we propose VANext (Variational Attention based Next) POI prediction: a latent variable model for inferring user's next footprint, with historical mobility attention. The variational encoding captures latent features of recent mobility, followed by searching the similar historical trajectories for periodical patterns. A trajectory convolutional network is then used to learn historical mobility, significantly improving the efficiency over often used recurrent networks. A novel variational attention mechanism is proposed to exploit the periodicity of historical mobility patterns, combined with recent check-in preference to predict next POIs. We also implement a semi-supervised variant - VANext-S, which relies on variational encoding for pre-training all current trajectories in an unsupervised manner, and uses the latent variables to initialize the current trajectory learning. Experiments conducted on real-world datasets demonstrate that VANext and VANext-S outperform the state-of-the-art human mobility prediction models.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

An important task in Location based Social Network applications is to predict mobility - specifically, user's next point-of-interest (POI) - challenging due to the implicit feedback of footprints, sparsity of generated check-ins, and the joint impact of historical periodicity and recent check-ins. Motivated by recent success of deep variational inference, we propose VANext (Variational Attention based Next) POI prediction: a latent variable model for inferring user's next footprint, with historical mobility attention. The variational encoding captures latent features of recent mobility, followed by searching the similar historical trajectories for periodical patterns. A trajectory convolutional network is then used to learn historical mobility, significantly improving the efficiency over often used recurrent networks. A novel variational attention mechanism is proposed to exploit the periodicity of historical mobility patterns, combined with recent check-in preference to predict next POIs. We also implement a semi-supervised variant - VANext-S, which relies on variational encoding for pre-training all current trajectories in an unsupervised manner, and uses the latent variables to initialize the current trajectory learning. Experiments conducted on real-world datasets demonstrate that VANext and VANext-S outperform the state-of-the-art human mobility prediction models.
通过变分注意预测人类流动性
基于位置的社交网络应用程序的一项重要任务是预测移动性——特别是用户的下一个兴趣点(POI)——由于足迹的隐式反馈、生成签到的稀疏性以及历史周期性和最近签到的共同影响,这一任务具有挑战性。受最近深度变分推理成功的启发,我们提出了VANext(基于变分注意力的下一步)POI预测:一个潜在变量模型,用于推断用户的下一个足迹,具有历史移动注意力。变分编码捕捉近期流动性的潜在特征,然后搜索相似的历史轨迹以寻找周期性模式。然后使用轨迹卷积网络来学习历史移动性,显著提高了常用循环网络的效率。提出了一种新的变分注意机制,利用历史移动模式的周期性,结合最近的登记偏好来预测下一个poi。我们还实现了一种半监督变体VANext-S,它依赖于变分编码以无监督的方式预训练所有当前轨迹,并使用潜在变量初始化当前轨迹学习。在真实世界数据集上进行的实验表明,VANext和VANext- s优于最先进的人类移动性预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信