An Accelerated Linear Approximation Method in Deep Actor-Critic Framework

Dazi Li, Yu Zheng, Tianheng Song, Q. Jin
{"title":"An Accelerated Linear Approximation Method in Deep Actor-Critic Framework","authors":"Dazi Li, Yu Zheng, Tianheng Song, Q. Jin","doi":"10.1109/DDCLS.2019.8909062","DOIUrl":null,"url":null,"abstract":"Reinforcement learning is considered to be one of the main methods of general artificial intelligence, which can realize self-learning of machines through interaction with the environment. In this paper, a modified version of deep reinforcement learning algorithm based on the Actor-Critic framework is proposed. Unlike traditional updated methods, the algorithm proposed in this paper adopts a special on-policy method, which we called Accelerated Linear Approximation Method in Deep Actor-Critic Framework (ALA-AC). When the network is trained to a certain extent, the networks' parameters of some layers are frozen, and the remaining layers' parameters are trained for better strategy and faster training speed.","PeriodicalId":6699,"journal":{"name":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"2 1","pages":"87-92"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2019.8909062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reinforcement learning is considered to be one of the main methods of general artificial intelligence, which can realize self-learning of machines through interaction with the environment. In this paper, a modified version of deep reinforcement learning algorithm based on the Actor-Critic framework is proposed. Unlike traditional updated methods, the algorithm proposed in this paper adopts a special on-policy method, which we called Accelerated Linear Approximation Method in Deep Actor-Critic Framework (ALA-AC). When the network is trained to a certain extent, the networks' parameters of some layers are frozen, and the remaining layers' parameters are trained for better strategy and faster training speed.
深度角色-评价框架中的加速线性逼近方法
强化学习被认为是通用人工智能的主要方法之一,它可以通过与环境的交互实现机器的自学习。本文提出了一种基于Actor-Critic框架的深度强化学习改进算法。与传统的更新方法不同,本文提出的算法采用了一种特殊的on-policy方法,我们称之为Deep actor - critical Framework (ALA-AC)中的加速线性逼近方法。当网络训练到一定程度时,部分层的网络参数被冻结,剩余层的网络参数继续训练,以获得更好的训练策略和更快的训练速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信