{"title":"Worst-case portfolio optimization with proportional transaction costs","authors":"Christoph Belak, Olaf Menkens, Jörn Sass","doi":"10.1080/17442508.2014.991325","DOIUrl":null,"url":null,"abstract":"We study optimal asset allocation in a crash-threatened financial market with proportional transaction costs. The market is assumed to be either in a normal state, in which the risky asset follows a geometric Brownian motion, or in a crash state, in which the price of the risky asset can suddenly drop by a certain relative amount. We only assume the maximum number and the maximum relative size of the crashes to be given and do not make any assumptions about their distributions. For every investment strategy, we identify the worst-case scenario in the sense that the expected utility of terminal wealth is minimized. The objective is then to determine the investment strategy which yields the highest expected utility in its worst-case scenario. We solve the problem for utility functions with constant relative risk aversion using a stochastic control approach. We characterize the value function as the unique viscosity solution of a second-order nonlinear partial differential equation. The optimal strategies are characterized by time-dependent free boundaries which we compute numerically. The numerical examples suggest that it is not optimal to invest any wealth in the risky asset close to the investment horizon, while a long position in the risky asset is optimal if the remaining investment period is sufficiently large.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.991325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We study optimal asset allocation in a crash-threatened financial market with proportional transaction costs. The market is assumed to be either in a normal state, in which the risky asset follows a geometric Brownian motion, or in a crash state, in which the price of the risky asset can suddenly drop by a certain relative amount. We only assume the maximum number and the maximum relative size of the crashes to be given and do not make any assumptions about their distributions. For every investment strategy, we identify the worst-case scenario in the sense that the expected utility of terminal wealth is minimized. The objective is then to determine the investment strategy which yields the highest expected utility in its worst-case scenario. We solve the problem for utility functions with constant relative risk aversion using a stochastic control approach. We characterize the value function as the unique viscosity solution of a second-order nonlinear partial differential equation. The optimal strategies are characterized by time-dependent free boundaries which we compute numerically. The numerical examples suggest that it is not optimal to invest any wealth in the risky asset close to the investment horizon, while a long position in the risky asset is optimal if the remaining investment period is sufficiently large.