On the $2$-class group of some number fields with large degree

IF 0.5 Q3 MATHEMATICS
M. M. Chems-Eddin, A. Azizi, A. Zekhnini
{"title":"On the $2$-class group of some number fields with large degree","authors":"M. M. Chems-Eddin, A. Azizi, A. Zekhnini","doi":"10.5817/AM2021-1-13","DOIUrl":null,"url":null,"abstract":"Let $d$ be an odd square-free integer, $m\\geq 3$, $k$:$=\\mathbb{Q}(\\sqrt{d}, \\sqrt{-1})$, $\\mathbb{Q}(\\sqrt{-2}, \\sqrt{d})$ or $\\mathbb{Q}(\\sqrt{-2}, \\sqrt{-d})$, and $L_{m,d}:=\\mathbb{Q}(\\zeta_{2^m},\\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}:=\\mathbb{Q}(\\zeta_{2^m},\\sqrt{d})$, with $m\\geq 3$ is an integer, such that the class number of $L_{m, d}$ is odd. Furthermore, using the cyclotomic $\\mathbb{Z}_2$-extensions of $k$, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the divisors of $d$ are congruent $3$ or $5\\pmod 8$.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"23 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/AM2021-1-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

Let $d$ be an odd square-free integer, $m\geq 3$, $k$:$=\mathbb{Q}(\sqrt{d}, \sqrt{-1})$, $\mathbb{Q}(\sqrt{-2}, \sqrt{d})$ or $\mathbb{Q}(\sqrt{-2}, \sqrt{-d})$, and $L_{m,d}:=\mathbb{Q}(\zeta_{2^m},\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}:=\mathbb{Q}(\zeta_{2^m},\sqrt{d})$, with $m\geq 3$ is an integer, such that the class number of $L_{m, d}$ is odd. Furthermore, using the cyclotomic $\mathbb{Z}_2$-extensions of $k$, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the divisors of $d$ are congruent $3$ or $5\pmod 8$.
若干大次数域的$2$-类群
设$d$为无奇平方整数$m\geq 3$, $k$: $=\mathbb{Q}(\sqrt{d}, \sqrt{-1})$, $\mathbb{Q}(\sqrt{-2}, \sqrt{d})$或$\mathbb{Q}(\sqrt{-2}, \sqrt{-d})$, $L_{m,d}:=\mathbb{Q}(\zeta_{2^m},\sqrt{d})$。在本文中,我们将确定所有字段$L_{m, d}:=\mathbb{Q}(\zeta_{2^m},\sqrt{d})$,其中$m\geq 3$为整数,使得$L_{m, d}$的类数为奇数。此外,使用$k$的分环$\mathbb{Z}_2$ -扩展,我们计算$L_{m, d}$的$2$ -类群的秩,当$d$的除数是相同的$3$或$5\pmod 8$时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信