On products of cyclic and abelian finite $p$-groups ($ p$ odd)

Pub Date : 2018-10-01 DOI:10.3792/pjaa.94.77
B. McCann
{"title":"On products of cyclic and abelian finite $p$-groups ($ p$ odd)","authors":"B. McCann","doi":"10.3792/pjaa.94.77","DOIUrl":null,"url":null,"abstract":"For an odd prime p, it is shown that if G 1⁄4 AB is a finite p-group, for subgroups A and B such that A is cyclic and B is abelian of exponent at most p, then kðAÞB E G, where kðAÞ 1⁄4 hg 2 A j g k 1⁄4 1i.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.94.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For an odd prime p, it is shown that if G 1⁄4 AB is a finite p-group, for subgroups A and B such that A is cyclic and B is abelian of exponent at most p, then kðAÞB E G, where kðAÞ 1⁄4 hg 2 A j g k 1⁄4 1i.
分享
查看原文
关于循环和阿贝尔有限$p$-群的积($ p$奇数)
对于奇素数p,证明了如果G 1 / 4 AB是有限p群,对于子群a和B,使得a是循环的,B是幂次的不超过p的,则kðAÞB E G,其中kðAÞ 1 / 4 hg 2 a j G k 1 / 4 1i。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信