dbcsp: User-friendly R package for Distance-Based Common Spacial Patterns

R J. Pub Date : 2021-09-02 DOI:10.32614/rj-2022-044
Itsaso Rodríguez-Moreno, I. Irigoien, B. Sierra, C. Arenas
{"title":"dbcsp: User-friendly R package for Distance-Based Common Spacial Patterns","authors":"Itsaso Rodríguez-Moreno, I. Irigoien, B. Sierra, C. Arenas","doi":"10.32614/rj-2022-044","DOIUrl":null,"url":null,"abstract":"Common Spacial Patterns (CSP) is a widely used method to analyse electroencephalography (EEG) data, concerning the supervised classification of brain's activity. More generally, it can be useful to distinguish between multivariate signals recorded during a time span for two different classes. CSP is based on the simultaneous diagonalization of the average covariance matrices of signals from both classes and it allows to project the data into a low-dimensional subspace. Once data are represented in a low-dimensional subspace, a classification step must be carried out. The original CSP method is based on the Euclidean distance between signals and here, we extend it so that it can be applied on any appropriate distance for data at hand. Both, the classical CSP and the new Distance-Based CSP (DB-CSP) are implemented in an R package, called dbcsp.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"135 1","pages":"80-94"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2022-044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Common Spacial Patterns (CSP) is a widely used method to analyse electroencephalography (EEG) data, concerning the supervised classification of brain's activity. More generally, it can be useful to distinguish between multivariate signals recorded during a time span for two different classes. CSP is based on the simultaneous diagonalization of the average covariance matrices of signals from both classes and it allows to project the data into a low-dimensional subspace. Once data are represented in a low-dimensional subspace, a classification step must be carried out. The original CSP method is based on the Euclidean distance between signals and here, we extend it so that it can be applied on any appropriate distance for data at hand. Both, the classical CSP and the new Distance-Based CSP (DB-CSP) are implemented in an R package, called dbcsp.
dbcsp:基于距离的公共空间模式的用户友好R包
共同空间模式(CSP)是一种广泛应用于脑电图数据分析的方法,涉及脑活动的监督分类。更一般地说,它可以用于区分在两个不同类别的时间跨度内记录的多变量信号。CSP基于两类信号的平均协方差矩阵的同时对角化,它允许将数据投影到低维子空间中。一旦数据在低维子空间中表示,就必须执行分类步骤。原来的CSP方法是基于信号之间的欧几里得距离,在这里,我们扩展了它,使它可以应用于任何适当的距离的数据。经典的CSP和新的基于距离的CSP (DB-CSP)都是在一个名为dbcsp的R包中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信