{"title":"Advancing in-memory Arithmetic Based on CMOS-integrable Memristive Crossbar Structures","authors":"E. Linn, Heidemarie Schmidt","doi":"10.37394/232020.2021.1.12","DOIUrl":null,"url":null,"abstract":"Memristive computing will be advantageous in large-scale, highly parallel mixed-mode processing architectures because processing can be performed directly within memristive memory architectures and intrachip communication can be implemented by a memristive crossbar structure with reconfigurable logic gates. Here we report on the development of a new concept for in-memory adders, using XOR functionality. Exploited memristive crossbar structures are based on memristive complementary resistive switches, e.g. TaOx, and BiFeO3.","PeriodicalId":93382,"journal":{"name":"The international journal of evidence & proof","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of evidence & proof","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232020.2021.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Memristive computing will be advantageous in large-scale, highly parallel mixed-mode processing architectures because processing can be performed directly within memristive memory architectures and intrachip communication can be implemented by a memristive crossbar structure with reconfigurable logic gates. Here we report on the development of a new concept for in-memory adders, using XOR functionality. Exploited memristive crossbar structures are based on memristive complementary resistive switches, e.g. TaOx, and BiFeO3.