{"title":"Conjugation curvature in solvable Baumslag–Solitar groups","authors":"J. Taback, Alden Walker","doi":"10.1142/S179352532150031X","DOIUrl":null,"url":null,"abstract":"For an element in $BS(1,n) = \\langle t,a | tat^{-1} = a^n \\rangle$ written in the normal form $t^{-u}a^vt^w$ with $u,w \\geq 0$ and $v \\in \\mathbb{Z}$, we exhibit a geodesic word representing the element and give a formula for its word length with respect to the generating set $\\{t,a\\}$. Using this word length formula, we prove that there are sets of elements of positive density of positive, negative and zero conjugation curvature, as defined by Bar Natan, Duchin and Kropholler.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S179352532150031X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
For an element in $BS(1,n) = \langle t,a | tat^{-1} = a^n \rangle$ written in the normal form $t^{-u}a^vt^w$ with $u,w \geq 0$ and $v \in \mathbb{Z}$, we exhibit a geodesic word representing the element and give a formula for its word length with respect to the generating set $\{t,a\}$. Using this word length formula, we prove that there are sets of elements of positive density of positive, negative and zero conjugation curvature, as defined by Bar Natan, Duchin and Kropholler.