{"title":"Regularity versus smoothness of measures","authors":"J. Fraser, Sascha Troscheit","doi":"10.2140/pjm.2021.311.257","DOIUrl":null,"url":null,"abstract":"The Assouad and lower dimensions and dimension spectra quantify the regularity of a measure by considering the relative measure of concentric balls. On the other hand, one can quantify the smoothness of an absolutely continuous measure by considering the $L^p$ norms of its density. We establish sharp relationships between these two notions. Roughly speaking, we show that smooth measures must be regular, but that regular measures need not be smooth.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/pjm.2021.311.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The Assouad and lower dimensions and dimension spectra quantify the regularity of a measure by considering the relative measure of concentric balls. On the other hand, one can quantify the smoothness of an absolutely continuous measure by considering the $L^p$ norms of its density. We establish sharp relationships between these two notions. Roughly speaking, we show that smooth measures must be regular, but that regular measures need not be smooth.