M-CAFE: Managing MOOC Student Feedback with Collaborative Filtering

Mo Zhou, A. Cliff, Allen Huang, S. Krishnan, Brandie Nonnecke, Kanji Uchino, Samuelson Joseph, A. Fox, Ken Goldberg
{"title":"M-CAFE: Managing MOOC Student Feedback with Collaborative Filtering","authors":"Mo Zhou, A. Cliff, Allen Huang, S. Krishnan, Brandie Nonnecke, Kanji Uchino, Samuelson Joseph, A. Fox, Ken Goldberg","doi":"10.1145/2724660.2728681","DOIUrl":null,"url":null,"abstract":"Ongoing student feedback on course content and assignments can be valuable for MOOC instructors in the absence of face-to-face-interaction. To collect ongoing feedback and scalably identify valuable suggestions, we built the MOOC Collaborative Assessment and Feedback Engine (M-CAFE). This mobile platform allows MOOC students to numerically assess the course, their own performance, and provide textual suggestions about how the course could be improved on a weekly basis. M-CAFE allows students to visualize how they compare with their peers and read and evaluate what others have suggested, providing peer-to-peer collaborative filtering. We evaluate M-CAFE based on data from two EdX MOOCs.","PeriodicalId":20664,"journal":{"name":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2724660.2728681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Ongoing student feedback on course content and assignments can be valuable for MOOC instructors in the absence of face-to-face-interaction. To collect ongoing feedback and scalably identify valuable suggestions, we built the MOOC Collaborative Assessment and Feedback Engine (M-CAFE). This mobile platform allows MOOC students to numerically assess the course, their own performance, and provide textual suggestions about how the course could be improved on a weekly basis. M-CAFE allows students to visualize how they compare with their peers and read and evaluate what others have suggested, providing peer-to-peer collaborative filtering. We evaluate M-CAFE based on data from two EdX MOOCs.
M-CAFE:用协同过滤管理MOOC学生反馈
在缺乏面对面交流的情况下,学生对课程内容和作业的持续反馈对MOOC教师来说很有价值。为了收集持续的反馈并可扩展地识别有价值的建议,我们建立了MOOC协作评估和反馈引擎(M-CAFE)。这个移动平台允许MOOC学生对课程和他们自己的表现进行数字评估,并提供关于如何改进课程的文本建议。M-CAFE允许学生可视化他们与同龄人的比较,并阅读和评估其他人的建议,提供点对点的协作过滤。我们基于两个EdX mooc的数据来评估M-CAFE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信