Spatiotemporal mapping of the contractile and adhesive forces sculpting early C. elegans embryos.

Kazunori Yamamoto, Sacha Ichbiah, Matthieu Perez, Joana Borrego-Pinto, Fabrice Delbary, Nate Goehring, Hervé Turlier, Guillaume Charras
{"title":"Spatiotemporal mapping of the contractile and adhesive forces sculpting early <i>C. elegans</i> embryos.","authors":"Kazunori Yamamoto, Sacha Ichbiah, Matthieu Perez, Joana Borrego-Pinto, Fabrice Delbary, Nate Goehring, Hervé Turlier, Guillaume Charras","doi":"10.1101/2023.03.07.531437","DOIUrl":null,"url":null,"abstract":"<p><p>Embryo shape is determined by individual cell mechanics, intercellular interaction strength, and geometrical constraints. Models based on surface tensions at cell interfaces can predict 3D static cellular arrangements within aggregates. However, predicting the dynamics of such arrangements is challenging due to difficulties in measuring temporal changes in tensions. Here, we characterise the spatiotemporal changes in cellular tensions shaping the early nematode embryo using AFM, live microscopy, and tension inference. Using excoriated embryos, we validate a hybrid inference pipeline that calibrates relative inferred tensions temporally using cortical myosin enrichment and absolute tensions using AFM measurements. Applied to embryos within their native shell, we infer a spatiotemporal map of absolute tensions, revealing that ABa, ABp, and EMS compaction is driven by increased tension at free surfaces, while P<sub>2</sub>'s initial exclusion is due to high tension at intercellular contacts. We uncover a direct and non-affine contribution of cadherins to cell-cell contact tension, comparable to cadherins' indirect contribution via actomyosin regulation.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236823/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.03.07.531437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Embryo shape is determined by individual cell mechanics, intercellular interaction strength, and geometrical constraints. Models based on surface tensions at cell interfaces can predict 3D static cellular arrangements within aggregates. However, predicting the dynamics of such arrangements is challenging due to difficulties in measuring temporal changes in tensions. Here, we characterise the spatiotemporal changes in cellular tensions shaping the early nematode embryo using AFM, live microscopy, and tension inference. Using excoriated embryos, we validate a hybrid inference pipeline that calibrates relative inferred tensions temporally using cortical myosin enrichment and absolute tensions using AFM measurements. Applied to embryos within their native shell, we infer a spatiotemporal map of absolute tensions, revealing that ABa, ABp, and EMS compaction is driven by increased tension at free surfaces, while P2's initial exclusion is due to high tension at intercellular contacts. We uncover a direct and non-affine contribution of cadherins to cell-cell contact tension, comparable to cadherins' indirect contribution via actomyosin regulation.

早期秀丽隐杆线虫胚胎的收缩力和粘附力的时空映射。
胚胎形状由单个细胞力学、细胞间相互作用强度和几何约束决定。基于细胞界面表面张力的模型可以预测聚集体内的三维静态细胞排列。然而,由于难以测量紧张局势的时间变化,预测这种安排的动态是具有挑战性的。在这里,我们利用原子力显微镜、活体显微镜和张力推断来描述塑造早期线虫胚胎的细胞张力的时空变化。使用去皮胚胎,我们验证了一种混合推断管道,该管道使用皮质肌球蛋白富集暂时校准相对推断张力,使用AFM测量绝对张力。应用于原生壳内的胚胎,我们推断出绝对张力的时空图,揭示ABa, ABp和EMS压实是由自由表面张力增加驱动的,而p2的初始排斥是由于细胞间接触处的高张力造成的。我们发现了钙粘蛋白对细胞-细胞接触张力的直接和非仿射贡献,与钙粘蛋白通过肌动球蛋白调节的间接贡献相当。重点:P系细胞的皮层张力低于AB系细胞。细胞皮层肌球蛋白- ii的富集是细胞-介质张力的良好预测指标,但不足以确定细胞-细胞接触时的张力。肌球蛋白信息张力推断允许确定胚胎内所有表面张力的时空演变。ABa、ABp和EMS之所以紧密,是因为它们的细胞-介质界面比它们的细胞-细胞界面有更高的张力,而p2最初由于细胞-细胞接触张力高而被排除在外。钙粘蛋白直接以非线性的方式减少了近50%的细胞间接触张力。开放获取:出于开放获取的目的,作者已对本次提交的任何作者接受的手稿版本应用了CC BY公共版权许可。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信