{"title":"Quasi-periodic motions on symplectic tori","authors":"M. Garay, A. Kessi, D. Straten, N. Yousfi","doi":"10.5427/jsing.2023.26c","DOIUrl":null,"url":null,"abstract":"The results of Kolmogorov, Arnold, and Moser on the stability of quasi-periodic motions spanning lagrangian tori in Hamiltonian systems are of fundamental importance and led to the development of KAM theory. Over the years, many variations of these results on quasi-periodic motions have been considered. In this paper, we present a more conceptual way of attacking such problems by considering the particular case of quasi-periodic motions on symplectic tori.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2018-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2023.26c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The results of Kolmogorov, Arnold, and Moser on the stability of quasi-periodic motions spanning lagrangian tori in Hamiltonian systems are of fundamental importance and led to the development of KAM theory. Over the years, many variations of these results on quasi-periodic motions have been considered. In this paper, we present a more conceptual way of attacking such problems by considering the particular case of quasi-periodic motions on symplectic tori.