On the choice of basis functions for the meshless radial point interpolation method with small local support domains

Z. Shaterian, T. Kaufmann, C. Fumeaux
{"title":"On the choice of basis functions for the meshless radial point interpolation method with small local support domains","authors":"Z. Shaterian, T. Kaufmann, C. Fumeaux","doi":"10.1109/COMPEM.2015.7052637","DOIUrl":null,"url":null,"abstract":"The behavior of two different types of basis functions for the meshless Radial Point Interpolation Method (RPIM) is investigated in this paper. A 2D test function is interpolated through Gaussian and Wendland basis functions and the approximation errors on the low-order derivatives of the test function are calculated. It is shown that the Gaussian basis function is more appropriate for the interpolation in small support domains whereas Wendland basis function is more accurate for larger support domains.","PeriodicalId":6530,"journal":{"name":"2015 IEEE International Conference on Computational Electromagnetics","volume":"3 1","pages":"288-290"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2015.7052637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The behavior of two different types of basis functions for the meshless Radial Point Interpolation Method (RPIM) is investigated in this paper. A 2D test function is interpolated through Gaussian and Wendland basis functions and the approximation errors on the low-order derivatives of the test function are calculated. It is shown that the Gaussian basis function is more appropriate for the interpolation in small support domains whereas Wendland basis function is more accurate for larger support domains.
小局部支持域无网格径向点插值法基函数的选择
研究了无网格径向点插值法(RPIM)中两种不同基函数的行为。通过高斯基函数和Wendland基函数插值二维测试函数,计算测试函数的低阶导数近似误差。结果表明,高斯基函数更适合小支持域的插值,而文德兰基函数更适合大支持域的插值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信