Does Dialectal Variation Matter in Term-Based Feature Selection of Sentiment Analysis?: An Investigation into Multi-dialectal Chinese Microblogs

K. C. Chan, King-wa Fu, Chung-hong Chan
{"title":"Does Dialectal Variation Matter in Term-Based Feature Selection of Sentiment Analysis?: An Investigation into Multi-dialectal Chinese Microblogs","authors":"K. C. Chan, King-wa Fu, Chung-hong Chan","doi":"10.1145/2786451.2786924","DOIUrl":null,"url":null,"abstract":"This paper examines the feature selection procedures of sentiment analysis on a multi-dialectal language. We analyzed a dataset with over 6 million microblogs in China, a multi-dialectal country, deployed sentiment classifier to examine the positive/negative emotion carried by the microblogs, and explored the regional variations in the optimal feature vectors. The results support a localized feature vectors in some China's regions can maximize the classification accuracy and show that geographical distance between provinces and common dialect used contribute to explaining the provincial difference in the feature vectors. This research can be applied to other multicultural countries for feature vector optimization in sentiment analysis.","PeriodicalId":93136,"journal":{"name":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786451.2786924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the feature selection procedures of sentiment analysis on a multi-dialectal language. We analyzed a dataset with over 6 million microblogs in China, a multi-dialectal country, deployed sentiment classifier to examine the positive/negative emotion carried by the microblogs, and explored the regional variations in the optimal feature vectors. The results support a localized feature vectors in some China's regions can maximize the classification accuracy and show that geographical distance between provinces and common dialect used contribute to explaining the provincial difference in the feature vectors. This research can be applied to other multicultural countries for feature vector optimization in sentiment analysis.
方言变异在基于词的情感分析特征选择中是否重要?中文多方言微博调查
本文研究了一种多方言语言情感分析的特征选择过程。我们对中国这个多方言国家的600多万条微博数据集进行了分析,利用情感分类器对微博所携带的积极/消极情绪进行了检测,并探讨了最优特征向量的区域差异。结果表明,在中国部分地区使用局部化的特征向量可以最大限度地提高分类精度,省际地理距离和常用方言的使用有助于解释特征向量的省际差异。本研究可应用于其他多元文化国家的情感分析特征向量优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信