Polynomial Bounds On Parallel Repetition For All 3-Player Games With Binary Inputs

Uma Girish, Kunal Mittal, R. Raz, Wei Zhan
{"title":"Polynomial Bounds On Parallel Repetition For All 3-Player Games With Binary Inputs","authors":"Uma Girish, Kunal Mittal, R. Raz, Wei Zhan","doi":"10.48550/arXiv.2204.00858","DOIUrl":null,"url":null,"abstract":"We prove that for every 3-player (3-prover) game $\\mathcal G$ with value less than one, whose query distribution has the support $\\mathcal S = \\{(1,0,0), (0,1,0), (0,0,1)\\}$ of hamming weight one vectors, the value of the $n$-fold parallel repetition $\\mathcal G^{\\otimes n}$ decays polynomially fast to zero; that is, there is a constant $c = c(\\mathcal G)>0$ such that the value of the game $\\mathcal G^{\\otimes n}$ is at most $n^{-c}$. Following the recent work of Girish, Holmgren, Mittal, Raz and Zhan (STOC 2022), our result is the missing piece that implies a similar bound for a much more general class of multiplayer games: For $\\textbf{every}$ 3-player game $\\mathcal G$ over $\\textit{binary questions}$ and $\\textit{arbitrary answer lengths}$, with value less than 1, there is a constant $c = c(\\mathcal G)>0$ such that the value of the game $\\mathcal G^{\\otimes n}$ is at most $n^{-c}$. Our proof technique is new and requires many new ideas. For example, we make use of the Level-$k$ inequalities from Boolean Fourier Analysis, which, to the best of our knowledge, have not been explored in this context prior to our work.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"9 1","pages":"6:1-6:17"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.00858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We prove that for every 3-player (3-prover) game $\mathcal G$ with value less than one, whose query distribution has the support $\mathcal S = \{(1,0,0), (0,1,0), (0,0,1)\}$ of hamming weight one vectors, the value of the $n$-fold parallel repetition $\mathcal G^{\otimes n}$ decays polynomially fast to zero; that is, there is a constant $c = c(\mathcal G)>0$ such that the value of the game $\mathcal G^{\otimes n}$ is at most $n^{-c}$. Following the recent work of Girish, Holmgren, Mittal, Raz and Zhan (STOC 2022), our result is the missing piece that implies a similar bound for a much more general class of multiplayer games: For $\textbf{every}$ 3-player game $\mathcal G$ over $\textit{binary questions}$ and $\textit{arbitrary answer lengths}$, with value less than 1, there is a constant $c = c(\mathcal G)>0$ such that the value of the game $\mathcal G^{\otimes n}$ is at most $n^{-c}$. Our proof technique is new and requires many new ideas. For example, we make use of the Level-$k$ inequalities from Boolean Fourier Analysis, which, to the best of our knowledge, have not been explored in this context prior to our work.
具有二进制输入的所有3人博弈并行重复的多项式界
我们证明了对于每一个值小于1的3人博弈(3-证明者)$\mathcal G$,其查询分布支持$\mathcal S = \{(1,0,0), (0,1,0), (0,0,1)\}$的hamming权值为1向量,$n$ -fold并行重复$\mathcal G^{\otimes n}$的值多项式地快速衰减到零;也就是说,存在一个常数$c = c(\mathcal G)>0$,使得游戏$\mathcal G^{\otimes n}$的值最多为$n^{-c}$。根据Girish, Holmgren, Mittal, Raz和Zhan (STOC 2022)最近的工作,我们的结果是缺失的部分,这意味着更一般的多人游戏类别的类似约束:对于$\textbf{every}$ 3人游戏$\mathcal G$在$\textit{binary questions}$和$\textit{arbitrary answer lengths}$上,值小于1,存在一个常数$c = c(\mathcal G)>0$,使得游戏$\mathcal G^{\otimes n}$的值最多为$n^{-c}$。我们的校对技术是新的,需要很多新的想法。例如,我们利用布尔傅立叶分析中的Level- $k$不等式,据我们所知,在我们的工作之前,还没有在这种情况下进行过探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信