Development of a quantitative structure–property relationship model for predicting the electrophoretic mobilities

Qianfeng Li , Lijun Dong , Runping Jia , Xingguo Chen , Zhide Hu , B.T Fan
{"title":"Development of a quantitative structure–property relationship model for predicting the electrophoretic mobilities","authors":"Qianfeng Li ,&nbsp;Lijun Dong ,&nbsp;Runping Jia ,&nbsp;Xingguo Chen ,&nbsp;Zhide Hu ,&nbsp;B.T Fan","doi":"10.1016/S0097-8485(01)00114-0","DOIUrl":null,"url":null,"abstract":"<div><p>Electrophoretic mobility (<em>μ</em><sub>0</sub>) is the most important parameter governing the separation of solutes in capillary zone electrophoresis. In this paper, a new model was constructed by means of a multilayer neural network using extended delta-bar-delta (EDBD) algorithm to estimate complex property of electrophoretic mobilities of aliphatic carboxylates and amines from simpler experimental properties. The molecular weight (<em>W</em>), molecular volume (<em>V</em>), the code (+1 or −1) of acid and base and p<em>K</em> value were used as input parameters to predict electrophoretic mobility. The networks' architecture and the learning times were optimized. The optimum artificial neural networks (ANNs) could give excellent prediction results.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 3","pages":"Pages 245-251"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00114-0","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501001140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Electrophoretic mobility (μ0) is the most important parameter governing the separation of solutes in capillary zone electrophoresis. In this paper, a new model was constructed by means of a multilayer neural network using extended delta-bar-delta (EDBD) algorithm to estimate complex property of electrophoretic mobilities of aliphatic carboxylates and amines from simpler experimental properties. The molecular weight (W), molecular volume (V), the code (+1 or −1) of acid and base and pK value were used as input parameters to predict electrophoretic mobility. The networks' architecture and the learning times were optimized. The optimum artificial neural networks (ANNs) could give excellent prediction results.

用于预测电泳迁移率的定量结构-性能关系模型的建立
电泳迁移率(μ0)是毛细管区带电泳中控制溶质分离最重要的参数。本文采用扩展delta-bar-delta (EDBD)算法构建了一个多层神经网络模型,从简单的实验性质出发,估计脂肪族羧酸酯和胺类化合物的电泳迁移率的复杂性质。以分子量(W)、分子体积(V)、酸碱编码(+1或−1)和pK值作为预测电泳迁移率的输入参数。优化了网络结构和学习时间。优化后的人工神经网络能给出较好的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信