Approximation of Optimal Control Problems for the Navier-Stokes equation via multilinear HJB-POD

M. Falcone, G. Kirsten, Luca Saluzzi
{"title":"Approximation of Optimal Control Problems for the Navier-Stokes equation via multilinear HJB-POD","authors":"M. Falcone, G. Kirsten, Luca Saluzzi","doi":"10.48550/arXiv.2207.07349","DOIUrl":null,"url":null,"abstract":"We consider the approximation of some optimal control problems for the Navier-Stokes equation via a Dynamic Programming approach. These control problems arise in many industrial applications and are very challenging from the numerical point of view since the semi-discretization of the dynamics corresponds to an evolutive system of ordinary differential equations in very high dimension. The typical approach is based on the Pontryagin maximum principle and leads to a two point boundary value problem. Here we present a different approach based on the value function and the solution of a Bellman, a challenging problem in high dimension. We mitigate the curse of dimensionality via a recent multilinear approximation of the dynamics coupled with a dynamic programming scheme on a tree structure. We discuss several aspects related to the implementation of this new approach and we present some numerical examples to illustrate the results on classical control problems studied in the literature.","PeriodicalId":7991,"journal":{"name":"Appl. Math. Comput.","volume":"8 1","pages":"127722"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Appl. Math. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.07349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We consider the approximation of some optimal control problems for the Navier-Stokes equation via a Dynamic Programming approach. These control problems arise in many industrial applications and are very challenging from the numerical point of view since the semi-discretization of the dynamics corresponds to an evolutive system of ordinary differential equations in very high dimension. The typical approach is based on the Pontryagin maximum principle and leads to a two point boundary value problem. Here we present a different approach based on the value function and the solution of a Bellman, a challenging problem in high dimension. We mitigate the curse of dimensionality via a recent multilinear approximation of the dynamics coupled with a dynamic programming scheme on a tree structure. We discuss several aspects related to the implementation of this new approach and we present some numerical examples to illustrate the results on classical control problems studied in the literature.
Navier-Stokes方程最优控制问题的多线性HJB-POD逼近
本文研究了用动态规划方法逼近Navier-Stokes方程的最优控制问题。这些控制问题出现在许多工业应用中,并且从数值角度来看是非常具有挑战性的,因为动力学的半离散化对应于一个非常高维的常微分方程演化系统。典型的方法是基于庞特里亚金极大值原理,并导致两点边值问题。在这里,我们提出了一种基于价值函数的不同方法,并解决了一个具有挑战性的高维问题Bellman。我们通过最近的动态多线性逼近与树形结构上的动态规划方案相结合,减轻了维数的诅咒。我们讨论了与这种新方法的实现有关的几个方面,并给出了一些数值例子来说明文献中研究的经典控制问题的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信