CRISPR-interference-based modulation of mobile genetic elements in bacteria

IF 3.2 4区 生物学 Q1 Agricultural and Biological Sciences
Synthetic Biology Pub Date : 2018-09-27 DOI:10.1101/428029
Á. Nyerges, B. Bálint, Judit Cseklye, I. Nagy, Csaba Pál, T. Fehér
{"title":"CRISPR-interference-based modulation of mobile genetic elements in bacteria","authors":"Á. Nyerges, B. Bálint, Judit Cseklye, I. Nagy, Csaba Pál, T. Fehér","doi":"10.1101/428029","DOIUrl":null,"url":null,"abstract":"Spontaneous mutagenesis of synthetic genetic constructs by mobile genetic elements frequently results in the rapid loss of advantageous functions. Previous efforts to minimize such mutations required the exceedingly time-consuming manipulation of bacterial chromosomes and the complete removal of insertional sequences (ISes). To this aim, we developed a single plasmid-based system (pCRIS) that applies CRISPR-interference to inhibit the transposition of bacterial ISes. pCRIS expresses multiple guide RNAs to direct inactivated Cas9 (dCas9) to simultaneously silence IS1, IS3, IS5, and IS150 at up to 38 chromosomal loci in Escherichia coli, in vivo. As a result, the transposition rate of all four targeted ISes dropped to negligible levels at both chromosomal and episomal targets, increasing the half-life of exogenous protein expression. Most notably, pCRIS, while requiring only a single plasmid delivery performed within a single day, provided a reduction of IS-mobility comparable to that seen in genome-scale chromosome engineering projects. Global transcriptomics analysis revealed nevertheless only minute alterations in the expression of untargeted genes. Finally, the transposition-silencing effect of pCRIS was easily transferable across multiple E. coli strains. The plasticity and robustness of our IS-silencing system make it a promising tool to stabilize bacterial genomes for synthetic biology and industrial biotechnology applications.","PeriodicalId":22158,"journal":{"name":"Synthetic Biology","volume":"301 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2018-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/428029","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 20

Abstract

Spontaneous mutagenesis of synthetic genetic constructs by mobile genetic elements frequently results in the rapid loss of advantageous functions. Previous efforts to minimize such mutations required the exceedingly time-consuming manipulation of bacterial chromosomes and the complete removal of insertional sequences (ISes). To this aim, we developed a single plasmid-based system (pCRIS) that applies CRISPR-interference to inhibit the transposition of bacterial ISes. pCRIS expresses multiple guide RNAs to direct inactivated Cas9 (dCas9) to simultaneously silence IS1, IS3, IS5, and IS150 at up to 38 chromosomal loci in Escherichia coli, in vivo. As a result, the transposition rate of all four targeted ISes dropped to negligible levels at both chromosomal and episomal targets, increasing the half-life of exogenous protein expression. Most notably, pCRIS, while requiring only a single plasmid delivery performed within a single day, provided a reduction of IS-mobility comparable to that seen in genome-scale chromosome engineering projects. Global transcriptomics analysis revealed nevertheless only minute alterations in the expression of untargeted genes. Finally, the transposition-silencing effect of pCRIS was easily transferable across multiple E. coli strains. The plasticity and robustness of our IS-silencing system make it a promising tool to stabilize bacterial genomes for synthetic biology and industrial biotechnology applications.
基于crispr干扰的细菌中可移动遗传元件的调节
由可移动遗传元件引起的合成遗传结构的自发突变常常导致优势功能的迅速丧失。以前最小化这种突变的努力需要极其耗时的细菌染色体操作和完全去除插入序列(ISes)。为此,我们开发了一种基于单一质粒的系统(pCRIS),该系统应用crispr干扰来抑制细菌ise的转位。pCRIS在体内表达多个引导rna,指导失活的Cas9 (dCas9)同时沉默大肠杆菌中多达38个染色体位点上的IS1、IS3、IS5和IS150。结果,所有四种靶向ise的转位率在染色体和表皮靶标上都降至可忽略不计的水平,增加了外源蛋白表达的半衰期。最值得注意的是,虽然pCRIS只需要在一天内完成单个质粒的递送,但它提供了与基因组规模的染色体工程项目相当的is迁移率降低。然而,全球转录组学分析显示,非靶向基因的表达只有微小的变化。最后,pCRIS的转座沉默效应很容易在多个大肠杆菌菌株之间转移。我们的is沉默系统的可塑性和稳健性使其成为合成生物学和工业生物技术应用中稳定细菌基因组的有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Synthetic Biology
Synthetic Biology Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
4.50
自引率
3.10%
发文量
28
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信