Duality and bicrystals on infinite binary matrices

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Thomas Gerber, C. Lecouvey
{"title":"Duality and bicrystals on infinite binary matrices","authors":"Thomas Gerber, C. Lecouvey","doi":"10.4171/aihpd/165","DOIUrl":null,"url":null,"abstract":"The set of finite binary matrices of a given size is known to carry a finite type A bicrystal structure. We first review this classical construction, explain how it yields a short proof of the equality between Kostka polynomials and one-dimensional sums together with a natural generalisation of the 2M − X Pitman transform. Next, we show that, once the relevant formalism on families of infinite binary matrices is introduced, this is a particular case of a much more general phenomenon. Each such family of matrices is proved to be endowed with Kac-Moody bicrystal and tricrystal structures defined from the classical root systems. Moreover, we give an explicit decomposition of these multicrystals, reminiscent of the decomposition of characters yielding the Cauchy identities.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":"21 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/aihpd/165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 4

Abstract

The set of finite binary matrices of a given size is known to carry a finite type A bicrystal structure. We first review this classical construction, explain how it yields a short proof of the equality between Kostka polynomials and one-dimensional sums together with a natural generalisation of the 2M − X Pitman transform. Next, we show that, once the relevant formalism on families of infinite binary matrices is introduced, this is a particular case of a much more general phenomenon. Each such family of matrices is proved to be endowed with Kac-Moody bicrystal and tricrystal structures defined from the classical root systems. Moreover, we give an explicit decomposition of these multicrystals, reminiscent of the decomposition of characters yielding the Cauchy identities.
无限二元矩阵上的对偶性和双晶
已知给定大小的有限二进制矩阵集具有有限a型双晶结构。我们首先回顾这个经典构造,解释它如何产生Kostka多项式和一维和之间的等式的简短证明以及2M−X Pitman变换的自然推广。接下来,我们证明,一旦引入了无限二元矩阵族的相关形式,这是一个更普遍现象的特殊情况。证明了每一类矩阵都具有由经典根系定义的Kac-Moody双晶和三晶结构。此外,我们给出了这些多晶的显式分解,使人联想到产生柯西恒等式的字符的分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信