{"title":"Identification of Risk Significant Automotive Scenarios Under Hardware Failures","authors":"Mohammad Hejase, A. Kurt, T. Aldemir, Ü. Özgüner","doi":"10.4204/EPTCS.269.6","DOIUrl":null,"url":null,"abstract":"The level of autonomous functions in vehicular control systems has been on a steady rise. This rise makes it more challenging for control system engineers to ensure a high level of safety, especially against unexpected failures such as stochastic hardware failures. A generic Backtracking Process Algorithm (BPA) based on a deductive implementation of the Markov/Cell-to-Cell Mapping technique is proposed for the identification of critical scenarios leading to the violation of safety goals. A discretized state-space representation of the system allows tracing of fault propagation throughout the system, and the quantification of probabilistic system evolution in time. A case study of a Hybrid State Control System for an autonomous vehicle prone to a brake-by-wire failure is constructed. The hazard of interest is collision with a stationary vehicle. The BPA is implemented to identify the risk significant scenarios leading to the hazard of interest.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"45 1","pages":"59-73"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.269.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The level of autonomous functions in vehicular control systems has been on a steady rise. This rise makes it more challenging for control system engineers to ensure a high level of safety, especially against unexpected failures such as stochastic hardware failures. A generic Backtracking Process Algorithm (BPA) based on a deductive implementation of the Markov/Cell-to-Cell Mapping technique is proposed for the identification of critical scenarios leading to the violation of safety goals. A discretized state-space representation of the system allows tracing of fault propagation throughout the system, and the quantification of probabilistic system evolution in time. A case study of a Hybrid State Control System for an autonomous vehicle prone to a brake-by-wire failure is constructed. The hazard of interest is collision with a stationary vehicle. The BPA is implemented to identify the risk significant scenarios leading to the hazard of interest.