M. Faruqi, Ateeq Mohammed Abdul, F. Aguiniga, B. Bailey
{"title":"Basic Analysis of a Steel Structure for Extreme Wind Loads","authors":"M. Faruqi, Ateeq Mohammed Abdul, F. Aguiniga, B. Bailey","doi":"10.11648/j.eas.20210604.12","DOIUrl":null,"url":null,"abstract":": In recent years, there has been an increase in United States (US) population and hence subsequently the increase in construction. Hurricanes are natural disaster and have a high probability rate of impact in the US. This is because the US has an extensive shoreline. Accordingly, US has experienced a number of hurricanes and its after effects are still evident. Therefore, there is a need to study these hurricanes and produce a better hurricane resistant design. In this basic work, we used hurricane intensity loads to study the effect of a hurricane on a typical shopping mall located in South Texas region using RISA-3D (Rapid Interactive Structural Analysis – 3 Dimensions) software along with the combination of design specifications from American Society of Civil Engineers (ASCE) and American Institute of Steel Construction-Load-Resistance and Factor Design (AISC-LRFD). The design factors for the calculation of the wind pressure were obtained from the ASCE manual and the members were selected from AISC-LRFD. A total of six loading cases were studied in this project namely: uniformly distributed and concentrated loads with no brace, two braces and four brace combinations. It was found that member M1 with no brace and four braces respectively produced the largest and smallest moments and member M4 with no brace and four braces respectively produced the highest and lowest deflections. The results from the basic analysis showed that we need to address controlling moments and deflections in critical members for a better hurricane resistant design.","PeriodicalId":15681,"journal":{"name":"Journal of Engineering and Applied Sciences","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.eas.20210604.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: In recent years, there has been an increase in United States (US) population and hence subsequently the increase in construction. Hurricanes are natural disaster and have a high probability rate of impact in the US. This is because the US has an extensive shoreline. Accordingly, US has experienced a number of hurricanes and its after effects are still evident. Therefore, there is a need to study these hurricanes and produce a better hurricane resistant design. In this basic work, we used hurricane intensity loads to study the effect of a hurricane on a typical shopping mall located in South Texas region using RISA-3D (Rapid Interactive Structural Analysis – 3 Dimensions) software along with the combination of design specifications from American Society of Civil Engineers (ASCE) and American Institute of Steel Construction-Load-Resistance and Factor Design (AISC-LRFD). The design factors for the calculation of the wind pressure were obtained from the ASCE manual and the members were selected from AISC-LRFD. A total of six loading cases were studied in this project namely: uniformly distributed and concentrated loads with no brace, two braces and four brace combinations. It was found that member M1 with no brace and four braces respectively produced the largest and smallest moments and member M4 with no brace and four braces respectively produced the highest and lowest deflections. The results from the basic analysis showed that we need to address controlling moments and deflections in critical members for a better hurricane resistant design.