{"title":"On almost pseudo cyclic Ricci symmetric manifolds","authors":"A. Shaikh, Ananta Patra","doi":"10.55937/sut/1312473184","DOIUrl":null,"url":null,"abstract":"The object of the present paper is to introduce a type of non-flat Riemannian manifolds called almost pseudo cyclic Ricci symmetric manifold and study its geometric properties. Among others it is shown that an almost pseudo cyclic Ricci symmetric manifold is a special type of quasi-Einstein manifold. We also study conformally flat almost pseudo cyclic Ricci symmetric manifolds and prove that such a manifold is isometrically immersed in an Euclidean manifold as a hypersurface. The existence of such notion is ensured by a non-trivial example. AMS 2010 Mathematics Subject Classification. 53B30, 53B50, 53C15, 53C25.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1312473184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
The object of the present paper is to introduce a type of non-flat Riemannian manifolds called almost pseudo cyclic Ricci symmetric manifold and study its geometric properties. Among others it is shown that an almost pseudo cyclic Ricci symmetric manifold is a special type of quasi-Einstein manifold. We also study conformally flat almost pseudo cyclic Ricci symmetric manifolds and prove that such a manifold is isometrically immersed in an Euclidean manifold as a hypersurface. The existence of such notion is ensured by a non-trivial example. AMS 2010 Mathematics Subject Classification. 53B30, 53B50, 53C15, 53C25.