J. Cantor, J. Cantor, Bronislava Shteyngart, J. Cerreta, Ming Liu, G. Armand, G. Turino
{"title":"The effect of hyaluronan on elastic fiber injury in vitro and elastase-induced airspace enlargement in vivo.","authors":"J. Cantor, J. Cantor, Bronislava Shteyngart, J. Cerreta, Ming Liu, G. Armand, G. Turino","doi":"10.1111/J.1525-1373.2000.22508.X","DOIUrl":null,"url":null,"abstract":"This laboratory has previously described a method of preventing air-space enlargement in experimental pulmonary emphysema using aerosolized hyaluronan (HA). Although it was found that HA preferentially binds to elastic fibers (which undergo breakdown by elastases in emphysema), it remains to be shown that such attachment actually prevents damage to the fibers. In the current study, cell-free radiolabeled extracellular matrices, derived from rat pleural mesothelial cells, were used to test the ability of low molecular weight ( approximately 100 kDa) streptococcal HA to prevent elastolysis. Coating the matrices with HA significantly decreased elastolysis (P<0.05) induced by porcine pancreatic elastase (43%), human neutrophil elastase (53%), and human macrophage metalloelastase (80%). Concomitant in vivo studies examined the ability of an aerosol preparation of the streptococcal HA to prevent experimental emphysema induced by intratracheal administration of porcine pancreatic elastase. As seen with earlier studies involving bovine tracheal HA, a single aerosol exposure significantly decreased elastase-induced airspace enlargement, as measured by the mean linear intercept (107.5 vs 89.6 microm; P < 0. 05). Furthermore, repeated exposure to the HA aerosol for 1 month did not reveal any morphological changes in the lung. The results provide further evidence that aerosolized HA may be an effective means of preventing pulmonary emphysema and perhaps other lung diseases that involve elastic fiber injury.","PeriodicalId":20618,"journal":{"name":"Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.1525-1373.2000.22508.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62
Abstract
This laboratory has previously described a method of preventing air-space enlargement in experimental pulmonary emphysema using aerosolized hyaluronan (HA). Although it was found that HA preferentially binds to elastic fibers (which undergo breakdown by elastases in emphysema), it remains to be shown that such attachment actually prevents damage to the fibers. In the current study, cell-free radiolabeled extracellular matrices, derived from rat pleural mesothelial cells, were used to test the ability of low molecular weight ( approximately 100 kDa) streptococcal HA to prevent elastolysis. Coating the matrices with HA significantly decreased elastolysis (P<0.05) induced by porcine pancreatic elastase (43%), human neutrophil elastase (53%), and human macrophage metalloelastase (80%). Concomitant in vivo studies examined the ability of an aerosol preparation of the streptococcal HA to prevent experimental emphysema induced by intratracheal administration of porcine pancreatic elastase. As seen with earlier studies involving bovine tracheal HA, a single aerosol exposure significantly decreased elastase-induced airspace enlargement, as measured by the mean linear intercept (107.5 vs 89.6 microm; P < 0. 05). Furthermore, repeated exposure to the HA aerosol for 1 month did not reveal any morphological changes in the lung. The results provide further evidence that aerosolized HA may be an effective means of preventing pulmonary emphysema and perhaps other lung diseases that involve elastic fiber injury.