FRAUD DETECTION AUTOMATION THROUGH DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Wishmy Meinawa Ikhsan, Elzami Haqie Ednoer, Winanda Setyaning Kridantika, Amrie Firmansyah
{"title":"FRAUD DETECTION AUTOMATION THROUGH DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE","authors":"Wishmy Meinawa Ikhsan, Elzami Haqie Ednoer, Winanda Setyaning Kridantika, Amrie Firmansyah","doi":"10.37641/riset.v4i2.166","DOIUrl":null,"url":null,"abstract":"This study aims to review the use of data analytics and artificial intelligence in fraud detection to support internal audits. This study employs a qualitative method with a scoping review approach. The research data comprised 24 online journal articles indexed by Scopus and Sinta, which were used as the basis for scoping reviews. The stages carried out in this study consisted of identifying research questions, using keywords, selecting literature, mapping the results of research data, and compiling a summary of research results. This study concludes that the fraud detection model based on data analytics and artificial intelligence has a high accuracy value in improving audit quality. This study indicates that the Indonesian Financial and Development Supervisory Agency needs to increase the use of technology, including data analytics and artificial intelligence, to detect fraud optimally.","PeriodicalId":32552,"journal":{"name":"Jurnal ASET Akuntansi Riset","volume":"232 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal ASET Akuntansi Riset","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37641/riset.v4i2.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This study aims to review the use of data analytics and artificial intelligence in fraud detection to support internal audits. This study employs a qualitative method with a scoping review approach. The research data comprised 24 online journal articles indexed by Scopus and Sinta, which were used as the basis for scoping reviews. The stages carried out in this study consisted of identifying research questions, using keywords, selecting literature, mapping the results of research data, and compiling a summary of research results. This study concludes that the fraud detection model based on data analytics and artificial intelligence has a high accuracy value in improving audit quality. This study indicates that the Indonesian Financial and Development Supervisory Agency needs to increase the use of technology, including data analytics and artificial intelligence, to detect fraud optimally.
通过数据分析和人工智能实现欺诈检测自动化
本研究旨在回顾数据分析和人工智能在欺诈检测中的应用,以支持内部审计。本研究采用定性方法与范围审查方法。研究数据包括由Scopus和Sinta索引的24篇在线期刊文章,这些文章被用作范围评估的基础。在本研究中进行的阶段包括确定研究问题,使用关键词,选择文献,绘制研究数据结果,编写研究结果摘要。本研究认为,基于数据分析和人工智能的欺诈检测模型对提高审计质量具有较高的准确性价值。这项研究表明,印尼金融和发展监管机构需要增加技术的使用,包括数据分析和人工智能,以最佳方式检测欺诈行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信