Non-parametric Bayesian covariate-dependent multivariate functional clustering: An application to time-series data for multiple air pollutants

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Daewon Yang, Taeryon Choi, Eric Lavigne, Yeonseung Chung
{"title":"Non-parametric Bayesian covariate-dependent multivariate functional clustering: An application to time-series data for multiple air pollutants","authors":"Daewon Yang,&nbsp;Taeryon Choi,&nbsp;Eric Lavigne,&nbsp;Yeonseung Chung","doi":"10.1111/rssc.12589","DOIUrl":null,"url":null,"abstract":"<p>Air pollution is a major threat to public health. Understanding the spatial distribution of air pollution concentration is of great interest to government or local authorities, as it informs about target areas for implementing policies for air quality management. Cluster analysis has been popularly used to identify groups of locations with similar profiles of average levels of multiple air pollutants, efficiently summarising the spatial pattern. This study aimed to cluster locations based on the seasonal patterns of multiple air pollutants incorporating the location-specific characteristics such as socio-economic indicators. For this purpose, we proposed a novel non-parametric Bayesian sparse latent factor model for covariate-dependent multivariate functional clustering. Furthermore, we extend this model to conduct clustering with temporal dependency. The proposed methods are illustrated through a simulation study and applied to time-series data for daily mean concentrations of ozone (<math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>O</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{O}}_3 $$</annotation>\n </semantics></math>), nitrogen dioxide (<math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <msub>\n <mrow>\n <mi>O</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ \\mathrm{N}{\\mathrm{O}}_2 $$</annotation>\n </semantics></math>), and fine particulate matter (<math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>.</mo>\n <mn>5</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ \\mathrm{P}{\\mathrm{M}}_{2.5} $$</annotation>\n </semantics></math>) collected for 25 cities in Canada in 1986–2015.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12589","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Air pollution is a major threat to public health. Understanding the spatial distribution of air pollution concentration is of great interest to government or local authorities, as it informs about target areas for implementing policies for air quality management. Cluster analysis has been popularly used to identify groups of locations with similar profiles of average levels of multiple air pollutants, efficiently summarising the spatial pattern. This study aimed to cluster locations based on the seasonal patterns of multiple air pollutants incorporating the location-specific characteristics such as socio-economic indicators. For this purpose, we proposed a novel non-parametric Bayesian sparse latent factor model for covariate-dependent multivariate functional clustering. Furthermore, we extend this model to conduct clustering with temporal dependency. The proposed methods are illustrated through a simulation study and applied to time-series data for daily mean concentrations of ozone ( O 3 $$ {\mathrm{O}}_3 $$ ), nitrogen dioxide ( N O 2 $$ \mathrm{N}{\mathrm{O}}_2 $$ ), and fine particulate matter ( P M 2 . 5 $$ \mathrm{P}{\mathrm{M}}_{2.5} $$ ) collected for 25 cities in Canada in 1986–2015.

非参数贝叶斯协变量相关多变量函数聚类:多空气污染物时间序列数据的应用
空气污染是对公众健康的重大威胁。了解空气污染浓度的空间分布对政府或地方当局非常有意义,因为它可以为实施空气质量管理政策的目标区域提供信息。聚类分析已被广泛用于识别具有多种空气污染物平均水平相似概况的地点组,有效地总结空间格局。本研究旨在根据多种空气污染物的季节性模式,结合社会经济指标等地点特定特征,对地点进行聚类。为此,我们提出了一种新的非参数贝叶斯稀疏潜因子模型,用于协变量相关的多元函数聚类。此外,我们将该模型扩展到具有时间依赖性的聚类。通过模拟研究说明了所提出的方法,并将其应用于臭氧日平均浓度的时间序列数据(o3 $$ {\mathrm{O}}_3 $$)。二氧化氮(n2 $$ \mathrm{N}{\mathrm{O}}_2 $$);细颗粒物(pm2)。5 $$ \mathrm{P}{\mathrm{M}}_{2.5} $$),收集了1986-2015年加拿大25个城市的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信