{"title":"The Derived Hecke Algebra for Dihedral Weight One Forms","authors":"M. Harris, V. Rotger, Akshay Venkatesh","doi":"10.1307/mmj/20217221","DOIUrl":null,"url":null,"abstract":"We study the action of the derived Hecke algebra in the setting of dihedral weight one forms and prove a conjecture of the secondand fourthnamed authors relating this action to certain Stark units associated to the symmetric square L-function. The proof exploits the theta correspondence between various Hecke modules as well as the ideas of Merel and Lecouturier on higher Eisenstein elements.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20217221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We study the action of the derived Hecke algebra in the setting of dihedral weight one forms and prove a conjecture of the secondand fourthnamed authors relating this action to certain Stark units associated to the symmetric square L-function. The proof exploits the theta correspondence between various Hecke modules as well as the ideas of Merel and Lecouturier on higher Eisenstein elements.