R. Kalgaonkar, M. Bataweel, M. Alkhowaildi, Q. Sahu
{"title":"A Non-Damaging Gelled Acid System Based on Surface Modified Nanoparticles","authors":"R. Kalgaonkar, M. Bataweel, M. Alkhowaildi, Q. Sahu","doi":"10.2118/204716-ms","DOIUrl":null,"url":null,"abstract":"\n Gelled acid systems based upon gelation of hydrochloric acid (HCl) are used widely in acid stimulation treatments to prevent fluid leak-off into the high permeable zones of a reservoir. The gelled-up fluid system helps retard the acid reaction to allow deeper acid penetration for hydrocarbon productivity enhancement. Conventional in-situ crosslinked gelled acid systems are made up of polyacrylamide gelling agent, iron-based crosslinker, and a breaker chemical in addition to other additives, with the acid as the base fluid. The polymer-based systems can lead to damage to formation due to a variety of reasons including unbroken polymer residue. Additionally, the iron-based crosslinker systems can lead to scaling or precipitation after the acid reacts with the formation, resulting in formation damage and lowering of hydrocarbon productivity.\n In this paper, we showcase a new nanoparticles-based gelled acid system that does not contain any polymer or iron-based crosslinker that can potentially damage the formation. It comprises nanoparticles, a gelation activator, acidizing treatment additives along with HCl. The new in-situ gelled acid system has low viscosity at surface making it easy to pump. With increase in the temperature and as the acid spends there is a viscosity increase. The viscosification and eventual gelation of the new system can be achieved as the acid reacts with a carbonate formation. As the acid further reacts and continues to spend, the gel demonstrates reduction of viscosity. This assists in a better cleanup post the acidizing treatment.\n Various experimental techniques were used to highlight the development of the nanoparticle-based acid diversion fluid. The gelation properties of the acid system, as a function of acid strength and temperature, are investigated. Static and dynamic gelation studies as a function of time, temperature and pH are reported. It is demonstrated that the viscosification property is a function of pH and the gelation occurs in a pH widow from 1 to 5 pH units. The gelation performance of the new system is evaluated at temperatures up to 300°F. The effect of different types of surface modification chemistries on the gelation properties is investigated. It is also shown that the gelation and viscosity reduction is entirely a pH dependent phenomenon and does not require any additional breaker chemistry; and therefore provides more control over the system performance.\n The new gelled acid system overcomes the inherent challenges faced by conventional in-situ crosslinked gelled acid systems; as it is based upon nanoparticles making it less prone to formation damage as compared to a crosslinked polymer-based system.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204716-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Gelled acid systems based upon gelation of hydrochloric acid (HCl) are used widely in acid stimulation treatments to prevent fluid leak-off into the high permeable zones of a reservoir. The gelled-up fluid system helps retard the acid reaction to allow deeper acid penetration for hydrocarbon productivity enhancement. Conventional in-situ crosslinked gelled acid systems are made up of polyacrylamide gelling agent, iron-based crosslinker, and a breaker chemical in addition to other additives, with the acid as the base fluid. The polymer-based systems can lead to damage to formation due to a variety of reasons including unbroken polymer residue. Additionally, the iron-based crosslinker systems can lead to scaling or precipitation after the acid reacts with the formation, resulting in formation damage and lowering of hydrocarbon productivity.
In this paper, we showcase a new nanoparticles-based gelled acid system that does not contain any polymer or iron-based crosslinker that can potentially damage the formation. It comprises nanoparticles, a gelation activator, acidizing treatment additives along with HCl. The new in-situ gelled acid system has low viscosity at surface making it easy to pump. With increase in the temperature and as the acid spends there is a viscosity increase. The viscosification and eventual gelation of the new system can be achieved as the acid reacts with a carbonate formation. As the acid further reacts and continues to spend, the gel demonstrates reduction of viscosity. This assists in a better cleanup post the acidizing treatment.
Various experimental techniques were used to highlight the development of the nanoparticle-based acid diversion fluid. The gelation properties of the acid system, as a function of acid strength and temperature, are investigated. Static and dynamic gelation studies as a function of time, temperature and pH are reported. It is demonstrated that the viscosification property is a function of pH and the gelation occurs in a pH widow from 1 to 5 pH units. The gelation performance of the new system is evaluated at temperatures up to 300°F. The effect of different types of surface modification chemistries on the gelation properties is investigated. It is also shown that the gelation and viscosity reduction is entirely a pH dependent phenomenon and does not require any additional breaker chemistry; and therefore provides more control over the system performance.
The new gelled acid system overcomes the inherent challenges faced by conventional in-situ crosslinked gelled acid systems; as it is based upon nanoparticles making it less prone to formation damage as compared to a crosslinked polymer-based system.