Huan-Zhi Xu, Lulu Liu, Yuqi Su, Ye Liang, Jiaxin Yang
{"title":"Effects of rapamycin on life span and on expression of TOR and S6K in Brachionus calyciflorus (Rotifera)","authors":"Huan-Zhi Xu, Lulu Liu, Yuqi Su, Ye Liang, Jiaxin Yang","doi":"10.3354/AB00673","DOIUrl":null,"url":null,"abstract":"The mechanistic target of rapamycin (mTOR) coordinates a complex signal pathway from translation to autophagy that is a key regulator of not only growth and proliferation but also metabolism and aging. mTOR is sensitive to many environmental and endocrine stimuli. We investigated the influence of TOR signaling on aging and reproduction of the rotifer Brachionus calyciflorus using rapamycin as an exogenous inhibitor. We found that 2 and 4 μM rapamycin extended B. calyciflorus life span by 15 and 22%, respectively compared with controls (p < 0.05). The reproductive peak was significantly delayed by rapamycin at 2 and 4 μM (p < 0.01), but the preand post-reproduction periods were not significantly different from controls (p > 0.05). Partial cDNAs coding 375 bp for TOR and 951 bp for S6 kinase (S6K) were obtained from B. calyciflorus expressed sequence tags. The identities of the deduced amino acid sequences of B. calyciflorus cDNAs to their human orthologs were 58% for TOR and 68% for S6K. TOR and S6K mRNA expression were upor down-regulated by different rapamycin concentrations (0.5, 1, 2, 4, 8, and 16 μM) and treatment intervals (control, 12, 24, 36, and 48 h). The results indicated that TOR inhibition acted additively to extend rotifer life span, with upand down-regulation simultaneously impacting reproduction and gene expression.","PeriodicalId":8111,"journal":{"name":"Aquatic Biology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3354/AB00673","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The mechanistic target of rapamycin (mTOR) coordinates a complex signal pathway from translation to autophagy that is a key regulator of not only growth and proliferation but also metabolism and aging. mTOR is sensitive to many environmental and endocrine stimuli. We investigated the influence of TOR signaling on aging and reproduction of the rotifer Brachionus calyciflorus using rapamycin as an exogenous inhibitor. We found that 2 and 4 μM rapamycin extended B. calyciflorus life span by 15 and 22%, respectively compared with controls (p < 0.05). The reproductive peak was significantly delayed by rapamycin at 2 and 4 μM (p < 0.01), but the preand post-reproduction periods were not significantly different from controls (p > 0.05). Partial cDNAs coding 375 bp for TOR and 951 bp for S6 kinase (S6K) were obtained from B. calyciflorus expressed sequence tags. The identities of the deduced amino acid sequences of B. calyciflorus cDNAs to their human orthologs were 58% for TOR and 68% for S6K. TOR and S6K mRNA expression were upor down-regulated by different rapamycin concentrations (0.5, 1, 2, 4, 8, and 16 μM) and treatment intervals (control, 12, 24, 36, and 48 h). The results indicated that TOR inhibition acted additively to extend rotifer life span, with upand down-regulation simultaneously impacting reproduction and gene expression.
期刊介绍:
AB publishes rigorously refereed and carefully selected Feature Articles, Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections, Opinion Pieces (previously called ''As I See It'') (for details consult the Guidelines for Authors) concerned with the biology, physiology, biochemistry and genetics (including the ’omics‘) of all aquatic organisms under laboratory and field conditions, and at all levels of organisation and investigation. Areas covered include:
-Biological aspects of biota: Evolution and speciation; life histories; biodiversity, biogeography and phylogeography; population genetics; biological connectedness between marine and freshwater biota; paleobiology of aquatic environments; invasive species.
-Biochemical and physiological aspects of aquatic life; synthesis and conversion of organic matter (mechanisms of auto- and heterotrophy, digestion, respiration, nutrition); thermo-, ion, osmo- and volume-regulation; stress and stress resistance; metabolism and energy budgets; non-genetic and genetic adaptation.
-Species interactions: Environment–organism and organism–organism interrelationships; predation: defenses (physical and chemical); symbioses.
-Molecular biology of aquatic life.
-Behavior: Orientation in space and time; migrations; feeding and reproductive behavior; agonistic behavior.
-Toxicology and water-quality effects on organisms; anthropogenic impacts on aquatic biota (e.g. pollution, fisheries); stream regulation and restoration.
-Theoretical biology: mathematical modelling of biological processes and species interactions.
-Methodology and equipment employed in aquatic biological research; underwater exploration and experimentation.
-Exploitation of aquatic biota: Fisheries; cultivation of aquatic organisms: use, management, protection and conservation of living aquatic resources.
-Reproduction and development in marine, brackish and freshwater organisms