Development of Multi-Coils Circular Eddy Current Sensor for Characterization of Fibers Orientation and Defect Detection in Multidirectional CFRP Material

IF 1 4区 材料科学 Q3 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
N. Benhadda, D. Hachi, B. Helifa, I. Lefkaier, B. Abdelhadi
{"title":"Development of Multi-Coils Circular Eddy Current Sensor for Characterization of Fibers Orientation and Defect Detection in Multidirectional CFRP Material","authors":"N. Benhadda, D. Hachi, B. Helifa, I. Lefkaier, B. Abdelhadi","doi":"10.1080/09349847.2019.1645254","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article presents a study of a Multi-coils circular eddy current non-destructive testing sensor for determining the fibers orientation as well as the detection of defect in multidirectional carbon fibers reinforced polymer (CFRP). The developed sensor contains 16 rectangular coils connected in series and supplied by a single-phase sinusoidal source. This sensor allows the annulations of the mechanical rotation of the conventional sensors and it permits to reduce the inspection procedure duration. The electromagnetic phenomena are calculated by using 3D finite element method (FEM) based on the electromagnetic AV-A formulation. Finally, the Multi-coils circular sensor responses are analyzed through polar diagrams of the impedance variation, where the defect is taken into consideration. A great concordance between the obtained results and those of literatures has been noticed. The provided results show that the proposed sensor allows an efficient characterization of multidirectional CFRP and detection of defects in different layers.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"6 1","pages":"133 - 146"},"PeriodicalIF":1.0000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2019.1645254","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT This article presents a study of a Multi-coils circular eddy current non-destructive testing sensor for determining the fibers orientation as well as the detection of defect in multidirectional carbon fibers reinforced polymer (CFRP). The developed sensor contains 16 rectangular coils connected in series and supplied by a single-phase sinusoidal source. This sensor allows the annulations of the mechanical rotation of the conventional sensors and it permits to reduce the inspection procedure duration. The electromagnetic phenomena are calculated by using 3D finite element method (FEM) based on the electromagnetic AV-A formulation. Finally, the Multi-coils circular sensor responses are analyzed through polar diagrams of the impedance variation, where the defect is taken into consideration. A great concordance between the obtained results and those of literatures has been noticed. The provided results show that the proposed sensor allows an efficient characterization of multidirectional CFRP and detection of defects in different layers.
多线圈环形涡流传感器在多向CFRP材料中纤维取向表征及缺陷检测的研制
本文研究了一种多线圈圆形涡流无损检测传感器,用于多向碳纤维增强聚合物(CFRP)中纤维取向的确定和缺陷的检测。所开发的传感器包含16个矩形线圈串联,由单相正弦源供电。该传感器允许传统传感器的机械旋转的环形,它允许减少检查过程的持续时间。基于电磁AV-A公式,采用三维有限元法对电磁现象进行了计算。最后,通过考虑缺陷的阻抗变化极坐标图分析了多线圈圆形传感器的响应。所得结果与文献的结果有很大的一致性。所提供的结果表明,所提出的传感器可以有效地表征多向CFRP并检测不同层的缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in Nondestructive Evaluation
Research in Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
2.30
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement. Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信