Comparison of low-dimension speech segment embeddings: Application to speaker diarization

Srikanth Raj Chetupalli, T. Sreenivas, Anand Gopalakrishnan
{"title":"Comparison of low-dimension speech segment embeddings: Application to speaker diarization","authors":"Srikanth Raj Chetupalli, T. Sreenivas, Anand Gopalakrishnan","doi":"10.1109/NCC.2019.8732210","DOIUrl":null,"url":null,"abstract":"Segment clustering is a crucial step in unsupervised speaker diarization. Bottom-up approaches, such as, hierarchical agglomerative clustering technique are used traditionally for segment clustering. In this paper, we consider the top-down approach to clustering, in which a speaker sensitive, low-dimensional representation of segments (speaker space) is obtained first, followed by Gaussian mixture model (GMM) based clustering. We explore three methods of obtaining the low dimension segment representation: (i) multi-dimensional scaling (MDS) based on segment to segment stochastic distances; (ii) traditional principal component analysis (PCA), and (iii) factor analysis (i-vectors), of GMM mean super-vectors. We found that, MDS based embeddings result in better representation and hence result in better diarization performance compared to PCA and even i-vector embeddings.","PeriodicalId":6870,"journal":{"name":"2019 National Conference on Communications (NCC)","volume":"103 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2019.8732210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Segment clustering is a crucial step in unsupervised speaker diarization. Bottom-up approaches, such as, hierarchical agglomerative clustering technique are used traditionally for segment clustering. In this paper, we consider the top-down approach to clustering, in which a speaker sensitive, low-dimensional representation of segments (speaker space) is obtained first, followed by Gaussian mixture model (GMM) based clustering. We explore three methods of obtaining the low dimension segment representation: (i) multi-dimensional scaling (MDS) based on segment to segment stochastic distances; (ii) traditional principal component analysis (PCA), and (iii) factor analysis (i-vectors), of GMM mean super-vectors. We found that, MDS based embeddings result in better representation and hence result in better diarization performance compared to PCA and even i-vector embeddings.
低维语音片段嵌入的比较:在说话人拨号化中的应用
分词聚类是无监督说话人划分的关键步骤。传统的分段聚类方法采用自底向上的方法,如分层聚类技术。本文采用自顶向下的聚类方法,首先获得说话人敏感的低维片段(说话人空间)表示,然后基于高斯混合模型(GMM)进行聚类。我们探索了三种获得低维段表示的方法:(i)基于段到段随机距离的多维缩放(MDS);(ii) GMM均值超向量的传统主成分分析(PCA)和(iii)因子分析(i-vectors)。我们发现,与PCA甚至i向量嵌入相比,基于MDS的嵌入具有更好的表示效果,因此具有更好的diarization性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信