The Behavior of Dredged Soil-Shredded Rubber Embankment Stabilized with Natural Minerals as a Road Foundation Layer

Q3 Engineering
K. A. Utama, T. Harianto, A. B. Muhiddin, A. Arsyad
{"title":"The Behavior of Dredged Soil-Shredded Rubber Embankment Stabilized with Natural Minerals as a Road Foundation Layer","authors":"K. A. Utama, T. Harianto, A. B. Muhiddin, A. Arsyad","doi":"10.28991/cej-2023-09-05-016","DOIUrl":null,"url":null,"abstract":"Recently, geotechnical studies have been conducted more progressively to utilize dredged soil. The inclusion of shredded rubber (SR) and natural minerals (NM) to stabilize dredged soil (DS) has become an exciting issue in the geotechnical field. This technique can be a promising environmental innovation for the future. This study aimed to investigate the unconfined compressive strength (UCS), California bearing ratio (CBR), and embankment performance under the strip footing test. The UCS sample was prepared using shredded rubber with a proportion of 2% and 3% and natural minerals with a proportion of 3%, 6%, 9%, and 12% from the dry weight of the soil. Whereas for the CBR samples (both in un-soaked and soaked conditions) were also prepared with a proportion of 2% and 3% shredded rubber and 6% and 9% natural minerals from the dry weight of the soil as well. The strip footing test was conducted in small-scale laboratory tests to evaluate the performance of stabilized dredged soil embankments. The applied load test was gradually increased until the embankment collapsed. The results showed that adding shredded rubber and natural minerals could increase the UCS value by 3–4 times and the CBR value by 2–3 times. Furthermore, 84% and 116% efficient results were obtained in the strip footing test for the 7 and 14 days of curing, respectively. Therefore, the utilization of dredged soil stabilized with SR and NM can be considered for use as a road foundation layer. Doi: 10.28991/CEJ-2023-09-05-016 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-05-016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, geotechnical studies have been conducted more progressively to utilize dredged soil. The inclusion of shredded rubber (SR) and natural minerals (NM) to stabilize dredged soil (DS) has become an exciting issue in the geotechnical field. This technique can be a promising environmental innovation for the future. This study aimed to investigate the unconfined compressive strength (UCS), California bearing ratio (CBR), and embankment performance under the strip footing test. The UCS sample was prepared using shredded rubber with a proportion of 2% and 3% and natural minerals with a proportion of 3%, 6%, 9%, and 12% from the dry weight of the soil. Whereas for the CBR samples (both in un-soaked and soaked conditions) were also prepared with a proportion of 2% and 3% shredded rubber and 6% and 9% natural minerals from the dry weight of the soil as well. The strip footing test was conducted in small-scale laboratory tests to evaluate the performance of stabilized dredged soil embankments. The applied load test was gradually increased until the embankment collapsed. The results showed that adding shredded rubber and natural minerals could increase the UCS value by 3–4 times and the CBR value by 2–3 times. Furthermore, 84% and 116% efficient results were obtained in the strip footing test for the 7 and 14 days of curing, respectively. Therefore, the utilization of dredged soil stabilized with SR and NM can be considered for use as a road foundation layer. Doi: 10.28991/CEJ-2023-09-05-016 Full Text: PDF
疏浚土-天然矿物稳定橡胶碎路堤路基路基性能研究
最近,岩土工程研究已逐步进行,以利用疏浚土。橡胶碎料与天然矿物的掺入稳定浚土已成为岩土工程领域的研究热点。这项技术在未来可能是一项很有前途的环保创新。本研究旨在探讨条形基础试验下的无侧限抗压强度(UCS)、加州承载比(CBR)和路堤性能。采用土壤干重中比例分别为2%和3%的碎橡胶和比例分别为3%、6%、9%和12%的天然矿物质制备UCS样品。而对于CBR样品(未浸水和浸水条件下),也分别用2%和3%的碎橡胶和6%和9%的土壤干重天然矿物质制备。在小型室内试验中进行了条形基础试验,以评价稳定的疏浚土路堤的性能。加荷试验逐渐增加,直至路堤坍塌。结果表明,添加橡胶碎料和天然矿物可使UCS值提高3 ~ 4倍,CBR值提高2 ~ 3倍。在养护7天和14天的条形基础试验中,效率分别达到84%和116%。因此,可以考虑利用SR和NM稳定的疏浚土作为道路基础层。Doi: 10.28991/CEJ-2023-09-05-016全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信