Some consequences of the rank normal form of a matrix

Pub Date : 2019-12-01 DOI:10.2478/ausm-2019-0028
Sorin Radulescu, Marius Drăgan, M. Bencze
{"title":"Some consequences of the rank normal form of a matrix","authors":"Sorin Radulescu, Marius Drăgan, M. Bencze","doi":"10.2478/ausm-2019-0028","DOIUrl":null,"url":null,"abstract":"Abstract If A is a rectangular matrix of rank r, then A may be written as PSQ where P and Q are invertible matrices and s=(IrOOO) s = \\left( {\\matrix{ \\hfill {{{\\rm{I}}_{\\rm{r}}}} & \\hfill {\\rm{O}} \\cr \\hfill {\\rm{O}} & \\hfill {\\rm{O}} \\cr } } \\right) . This is the rank normal form of the matrix A. The purpose of this paper is to exhibit some consequences of this representation form.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2019-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract If A is a rectangular matrix of rank r, then A may be written as PSQ where P and Q are invertible matrices and s=(IrOOO) s = \left( {\matrix{ \hfill {{{\rm{I}}_{\rm{r}}}} & \hfill {\rm{O}} \cr \hfill {\rm{O}} & \hfill {\rm{O}} \cr } } \right) . This is the rank normal form of the matrix A. The purpose of this paper is to exhibit some consequences of this representation form.
分享
查看原文
矩阵的秩正规形式的一些结果
摘要如果A是秩为r的矩形矩阵,则A可以写成PSQ,其中P和Q是可逆矩阵,s=(IrOOO) s= \左({\矩阵{\ hfill {{\rm{I}}_{\rm{r}}}} & \hfill {\rm{O}} \cr \hfill {\rm{O}} & \hfill {\rm{O}} \cr}} \hfill {\rm{O}} \cr}} \右)。这是矩阵a的秩范式。本文的目的是展示这种表示形式的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信