Nitrogen Diffusion in Vacancy-Rich Ferrite and Austenite, from First Principles to Applications

A. Karimi, M. Auinger
{"title":"Nitrogen Diffusion in Vacancy-Rich Ferrite and Austenite, from First Principles to Applications","authors":"A. Karimi, M. Auinger","doi":"10.2139/ssrn.3694759","DOIUrl":null,"url":null,"abstract":"This work contains a systematic study of the diffusion of nitrogen in Ferrite (α Fe, BCC) and Austenite (γ Fe, FCC) from first principles, using a robust multi scale model which combines Density Functional Theory (DFT) and Kinetic Monte Carlo (KMC). Both ferromagnetic BCC and non-magnetic FCC iron are considered using DFT to drive a diffusion model, which shows strong agreement with experimental diffusion data in literature. Further, quantified predictions are calculated for nitrogen diffusion in iron crystals which are vacancy-rich. In particular, it was found that an extended diffusion coefficient of nitrogen can be expressed as a function of nitrogen and vacancy concentration by fitting polynomial coefficients. These are calculated within the 100◦C < T < 1500◦C temperature range, and 0.01 at.% < cN < 10.0 at.% nitrogen concentration range. Such insights in vacancy-rich crystals may be useful to nitriding manufacturers, as enhanced diffusion models are an important factor in improving existing processes and avoiding common manufacturing problems such as the egg-shell-effect.","PeriodicalId":11974,"journal":{"name":"EngRN: Engineering Design Process (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Engineering Design Process (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3694759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work contains a systematic study of the diffusion of nitrogen in Ferrite (α Fe, BCC) and Austenite (γ Fe, FCC) from first principles, using a robust multi scale model which combines Density Functional Theory (DFT) and Kinetic Monte Carlo (KMC). Both ferromagnetic BCC and non-magnetic FCC iron are considered using DFT to drive a diffusion model, which shows strong agreement with experimental diffusion data in literature. Further, quantified predictions are calculated for nitrogen diffusion in iron crystals which are vacancy-rich. In particular, it was found that an extended diffusion coefficient of nitrogen can be expressed as a function of nitrogen and vacancy concentration by fitting polynomial coefficients. These are calculated within the 100◦C < T < 1500◦C temperature range, and 0.01 at.% < cN < 10.0 at.% nitrogen concentration range. Such insights in vacancy-rich crystals may be useful to nitriding manufacturers, as enhanced diffusion models are an important factor in improving existing processes and avoiding common manufacturing problems such as the egg-shell-effect.
氮在富空位铁素体和奥氏体中的扩散,从第一性原理到应用
本文采用密度泛函理论(DFT)和动力学蒙特卡罗(KMC)相结合的鲁棒多尺度模型,从第一性原理出发,系统地研究了氮在铁素体(α Fe, BCC)和奥氏体(γ Fe, FCC)中的扩散。采用离散傅里叶变换(DFT)计算了铁磁性BCC和非磁性FCC铁的扩散模型,结果与文献中实验扩散数据吻合较好。进一步,对富空位的铁晶体中氮的扩散进行了定量预测。特别地,通过拟合多项式系数,发现氮的扩展扩散系数可以表示为氮和空位浓度的函数。这些都是在100°C <T & lt;1500◦C温度范围,和0.01 at。% & lt;cN & lt;10.0。%氮浓度范围。这种对富空位晶体的见解可能对氮化制造商有用,因为增强的扩散模型是改进现有工艺和避免常见制造问题(如蛋壳效应)的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信