{"title":"A Comprehensive Survey of Deep Learning Techniques Natural Language Processing","authors":"Jasmin Praful Bharadiya","doi":"10.47672/ejt.1473","DOIUrl":null,"url":null,"abstract":"In NLP research, unsupervised or semi-supervised learning techniques are increasingly getting more attention. These learning techniques are capable of learning from data that has not been manually annotated with the necessary answers or by combining non-annotated and annotated data. This essay presents a survey of various natural language processing methods. The discipline of natural language processing, which integrates linguistics, artificial intelligence, and computer science, was established to make it easier for computers and human language to communicate with one another. It is, as we can say, relevant psychopathology for the study of computer-human interaction. The understanding of natural language, which entails enabling machines to naturally interpret human language, is one of the many challenges this area faces. Discourse analysis, morphological separation, machine translation, production and understanding of NLP, part-of-speech tagging, recognition of optical characters, speech recognition, and sentiment analysis are some of the most frequent NLP tasks. As opposed to learning, which is supervised and typically yields few correct results for a given amount of input data, this job is typically quite difficult. However, there is a sizable amount of data available that is unannotated in nature, i.e. the entire contents are available on the internet, and it typically yields less accurate findings. \n ","PeriodicalId":55090,"journal":{"name":"Glass Technology-European Journal of Glass Science and Technology Part a","volume":"18 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Technology-European Journal of Glass Science and Technology Part a","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.47672/ejt.1473","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 5
Abstract
In NLP research, unsupervised or semi-supervised learning techniques are increasingly getting more attention. These learning techniques are capable of learning from data that has not been manually annotated with the necessary answers or by combining non-annotated and annotated data. This essay presents a survey of various natural language processing methods. The discipline of natural language processing, which integrates linguistics, artificial intelligence, and computer science, was established to make it easier for computers and human language to communicate with one another. It is, as we can say, relevant psychopathology for the study of computer-human interaction. The understanding of natural language, which entails enabling machines to naturally interpret human language, is one of the many challenges this area faces. Discourse analysis, morphological separation, machine translation, production and understanding of NLP, part-of-speech tagging, recognition of optical characters, speech recognition, and sentiment analysis are some of the most frequent NLP tasks. As opposed to learning, which is supervised and typically yields few correct results for a given amount of input data, this job is typically quite difficult. However, there is a sizable amount of data available that is unannotated in nature, i.e. the entire contents are available on the internet, and it typically yields less accurate findings.
期刊介绍:
The Journal of the Society of Glass Technology was published between 1917 and 1959. There were four or six issues per year depending on economic circumstances of the Society and the country. Each issue contains Proceedings, Transactions, Abstracts, News and Reviews, and Advertisements, all thesesections were numbered separately. The bound volumes collected these pages into separate sections, dropping the adverts. There is a list of Council members and Officers of the Society and earlier volumes also had lists of personal and company members.
JSGT was divided into Part A Glass Technology and Part B Physics and Chemistry of Glasses in 1960.