Learning a perceptual manifold for image set classification

Sriram Kumar, A. Savakis
{"title":"Learning a perceptual manifold for image set classification","authors":"Sriram Kumar, A. Savakis","doi":"10.1109/ICIP.2016.7533198","DOIUrl":null,"url":null,"abstract":"We present a biologically motivated manifold learning framework for image set classification inspired by Independent Component Analysis for Grassmann manifolds. A Grassmann manifold is a collection of linear subspaces, such that each subspace is mapped on a single point on the manifold. We propose constructing Grassmann subspaces using Independent Component Analysis for robustness and improved class separation. The independent components capture spatially local information similar to Gabor-like filters within each subspace resulting in better classification accuracy. We further utilize linear discriminant analysis or sparse representation classification on the Grassmann manifold to achieve robust classification performance. We demonstrate the efficacy of our approach for image set classification on face and object recognition datasets.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"126 1","pages":"4433-4437"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7533198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a biologically motivated manifold learning framework for image set classification inspired by Independent Component Analysis for Grassmann manifolds. A Grassmann manifold is a collection of linear subspaces, such that each subspace is mapped on a single point on the manifold. We propose constructing Grassmann subspaces using Independent Component Analysis for robustness and improved class separation. The independent components capture spatially local information similar to Gabor-like filters within each subspace resulting in better classification accuracy. We further utilize linear discriminant analysis or sparse representation classification on the Grassmann manifold to achieve robust classification performance. We demonstrate the efficacy of our approach for image set classification on face and object recognition datasets.
学习用于图像集分类的感知流形
我们提出了一个生物驱动的流形学习框架,该框架受格拉斯曼流形独立分量分析的启发,用于图像集分类。格拉斯曼流形是线性子空间的集合,使得每个子空间映射到流形上的一个点上。我们提出使用独立成分分析构造Grassmann子空间以增强鲁棒性和改进的类分离。独立组件捕获空间局部信息,类似于每个子空间中的类gabor过滤器,从而获得更好的分类精度。我们进一步利用格拉斯曼流形上的线性判别分析或稀疏表示分类来实现鲁棒分类性能。我们证明了我们的方法在人脸和物体识别数据集上的图像集分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信