Asymptotic stability of impulsive stochastic partial integrodifferential equations with delays

Pub Date : 2014-07-04 DOI:10.1080/17442508.2013.879143
M. Diop, K. Ezzinbi, Modou Lo
{"title":"Asymptotic stability of impulsive stochastic partial integrodifferential equations with delays","authors":"M. Diop, K. Ezzinbi, Modou Lo","doi":"10.1080/17442508.2013.879143","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence and asymptotic stability in the p-th moment of mild solutions of nonlinear impulsive stochastic partial functional integrodifferential equations with delays. We suppose that the linear part possesses a resolvent operator in the sense given in Grimmer [R. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Am. Math. Soc. 273(1) (1982), 333–349] and the nonlinear terms are assumed to be Lipschitz continuous. A fixed point approach is employed for achieving the required result. An example is provided to illustrate the results of this work.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2013.879143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper, we study the existence and asymptotic stability in the p-th moment of mild solutions of nonlinear impulsive stochastic partial functional integrodifferential equations with delays. We suppose that the linear part possesses a resolvent operator in the sense given in Grimmer [R. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Am. Math. Soc. 273(1) (1982), 333–349] and the nonlinear terms are assumed to be Lipschitz continuous. A fixed point approach is employed for achieving the required result. An example is provided to illustrate the results of this work.
分享
查看原文
带时滞的脉冲随机偏积分微分方程的渐近稳定性
本文研究了一类具有时滞的非线性脉冲随机偏泛函积分微分方程温和解的存在性和p阶渐近稳定性。我们假设线性部分具有在Grimmer [R]中给出的意义上的可解算子。王志强,空间中积分方程的解算算子,译。点。数学。Soc. 273(1)(1982), 333-349],并假设非线性项是Lipschitz连续的。为了达到所要求的结果,采用了定点方法。给出了一个例子来说明这项工作的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信