Violence Detection with Machine Learning: A Sociodemographic Approach

T. Ensari, Betül Ensari, M. Dağtekin
{"title":"Violence Detection with Machine Learning: A Sociodemographic Approach","authors":"T. Ensari, Betül Ensari, M. Dağtekin","doi":"10.31590/ejosat.1225896","DOIUrl":null,"url":null,"abstract":"This study suggests that by implementing machine learning methods on a sociodemographic data set can be helpful in preventing domestic violence. This approach is important in predicting high-risk factors that an offender may cause and it offers treatment, and financial or mental health aids in order to prevent domestic violence. In this sense, this proposal is critical at a personal and social level in creating a secure and healthy environment as well as empowering an equal society. In our study, we use k-nearest neighbor (k-nn), support vector machine (SVM), decision tree (DT), and Gaussian Naive Bayes (GNB) machine learning algorithms for the prediction analysis. We provide the comparison of the classifiers with precision, recall, F1 score, and accuracy performance measures. According to our analysis, the decision tree (DT) performs the best performance in terms of accuracy.","PeriodicalId":12068,"journal":{"name":"European Journal of Science and Technology","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31590/ejosat.1225896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study suggests that by implementing machine learning methods on a sociodemographic data set can be helpful in preventing domestic violence. This approach is important in predicting high-risk factors that an offender may cause and it offers treatment, and financial or mental health aids in order to prevent domestic violence. In this sense, this proposal is critical at a personal and social level in creating a secure and healthy environment as well as empowering an equal society. In our study, we use k-nearest neighbor (k-nn), support vector machine (SVM), decision tree (DT), and Gaussian Naive Bayes (GNB) machine learning algorithms for the prediction analysis. We provide the comparison of the classifiers with precision, recall, F1 score, and accuracy performance measures. According to our analysis, the decision tree (DT) performs the best performance in terms of accuracy.
机器学习的暴力检测:一种社会人口学方法
这项研究表明,通过在社会人口统计数据集上实施机器学习方法可以帮助预防家庭暴力。这种方法在预测罪犯可能造成的高风险因素方面很重要,它提供治疗以及经济或精神健康援助,以防止家庭暴力。从这个意义上说,这一建议在个人和社会层面上对于创造安全和健康的环境以及赋予平等的社会权力至关重要。在我们的研究中,我们使用k-最近邻(k-nn)、支持向量机(SVM)、决策树(DT)和高斯朴素贝叶斯(GNB)机器学习算法进行预测分析。我们提供了分类器与精度、召回率、F1分数和准确性性能指标的比较。根据我们的分析,决策树(DT)在准确性方面表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信