Online ANFIS controller based on RBF identification and PSO

A. Farid, S. M. Barakati, N. Seifipour, N. Tayebi
{"title":"Online ANFIS controller based on RBF identification and PSO","authors":"A. Farid, S. M. Barakati, N. Seifipour, N. Tayebi","doi":"10.1109/ASCC.2013.6606232","DOIUrl":null,"url":null,"abstract":"Adaptive neuro-fuzzy inference system (ANFIS) is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper online training of ANFIS is done using radial basis function (RBF) neural network. In this online approach, identification of controlled plant is done, and based on this identification, the weights and coefficients are adjusted timely. Finally, to overcome initialization problem, using Particle swarm optimization (PSO) as an evolutionary algorithm is proposed.","PeriodicalId":6304,"journal":{"name":"2013 9th Asian Control Conference (ASCC)","volume":"49 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th Asian Control Conference (ASCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2013.6606232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Adaptive neuro-fuzzy inference system (ANFIS) is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper online training of ANFIS is done using radial basis function (RBF) neural network. In this online approach, identification of controlled plant is done, and based on this identification, the weights and coefficients are adjusted timely. Finally, to overcome initialization problem, using Particle swarm optimization (PSO) as an evolutionary algorithm is proposed.
基于RBF辨识和粒子群算法的在线ANFIS控制器
自适应神经模糊推理系统(ANFIS)是一种将神经网络与模糊系统相结合的混合神经模糊系统,能够在不确定和不精确的环境中进行推理和学习。本文采用径向基函数(RBF)神经网络对ANFIS进行在线训练。该方法对被控对象进行在线辨识,并在此基础上及时调整权值和系数。最后,为了克服初始化问题,提出了采用粒子群优化(PSO)作为进化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信