{"title":"An Ion Exchange Mechanism Inspired Story Ending Generator for Different Characters","authors":"Xinyu Jiang, Qi Zhang, Chongyang Shi, Kaiying Jiang, Liang Hu, Shoujin Wang","doi":"10.48550/arXiv.2209.00200","DOIUrl":null,"url":null,"abstract":"Story ending generation aims at generating reasonable endings for a given story context. Most existing studies in this area focus on generating coherent or diversified story endings, while they ignore that different characters may lead to different endings for a given story. In this paper, we propose a Character-oriented Story Ending Generator (CoSEG) to customize an ending for each character in a story. Specifically, we first propose a character modeling module to learn the personalities of characters from their descriptive experiences extracted from the story context. Then, inspired by the ion exchange mechanism in chemical reactions, we design a novel vector breaking/forming module to learn the intrinsic interactions between each character and the corresponding context through an analogical information exchange procedure. Finally, we leverage the attention mechanism to learn effective character-specific interactions and feed each interaction into a decoder to generate character-orient endings. Extensive experimental results and case studies demonstrate that CoSEG achieves significant improvements in the quality of generated endings compared with state-of-the-art methods, and it effectively customizes the endings for different characters.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"34 1","pages":"553-570"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.00200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Story ending generation aims at generating reasonable endings for a given story context. Most existing studies in this area focus on generating coherent or diversified story endings, while they ignore that different characters may lead to different endings for a given story. In this paper, we propose a Character-oriented Story Ending Generator (CoSEG) to customize an ending for each character in a story. Specifically, we first propose a character modeling module to learn the personalities of characters from their descriptive experiences extracted from the story context. Then, inspired by the ion exchange mechanism in chemical reactions, we design a novel vector breaking/forming module to learn the intrinsic interactions between each character and the corresponding context through an analogical information exchange procedure. Finally, we leverage the attention mechanism to learn effective character-specific interactions and feed each interaction into a decoder to generate character-orient endings. Extensive experimental results and case studies demonstrate that CoSEG achieves significant improvements in the quality of generated endings compared with state-of-the-art methods, and it effectively customizes the endings for different characters.