Chance constrained stochastic MPC for building climate control under combined parametric and additive uncertainty

IF 2.2 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Anke Uytterhoeven, Robbe Van Rompaey, K. Bruninx, L. Helsen
{"title":"Chance constrained stochastic MPC for building climate control under combined parametric and additive uncertainty","authors":"Anke Uytterhoeven, Robbe Van Rompaey, K. Bruninx, L. Helsen","doi":"10.1080/19401493.2022.2058087","DOIUrl":null,"url":null,"abstract":"This paper presents a chance constrained stochastic model predictive control (SMPC) approach for building climate control under combined parametric and additive uncertainties. The proposed SMPCap approach enables the quantification, and manipulation, of both the mean and covariance of the stochastic system states and inputs. Its enhanced uncertainty anticipation is shown to induce improved thermal comfort in closed-loop simulations compared to the conventional deterministic MPC (DMPC) and the state-of-the-art SMPCa only accounting for additive uncertainties, at the cost of a maximum relative increase in energy use of 21.6% and 4.2%, respectively. By incorporating the SMPCap strategy in an integrated optimal control and design (IOCD) approach, its additional added value for obtaining a more appropriate, yet robust, heat supply system sizing is illustrated. Via simulations, size reductions up to 33.3% are shown to be achievable for a terraced single-family dwelling without increasing thermal discomfort compared to an IOCD approach incorporating DMPC.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"83 1","pages":"410 - 430"},"PeriodicalIF":2.2000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2058087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a chance constrained stochastic model predictive control (SMPC) approach for building climate control under combined parametric and additive uncertainties. The proposed SMPCap approach enables the quantification, and manipulation, of both the mean and covariance of the stochastic system states and inputs. Its enhanced uncertainty anticipation is shown to induce improved thermal comfort in closed-loop simulations compared to the conventional deterministic MPC (DMPC) and the state-of-the-art SMPCa only accounting for additive uncertainties, at the cost of a maximum relative increase in energy use of 21.6% and 4.2%, respectively. By incorporating the SMPCap strategy in an integrated optimal control and design (IOCD) approach, its additional added value for obtaining a more appropriate, yet robust, heat supply system sizing is illustrated. Via simulations, size reductions up to 33.3% are shown to be achievable for a terraced single-family dwelling without increasing thermal discomfort compared to an IOCD approach incorporating DMPC.
参数不确定性与加性不确定性相结合的建筑气候控制的机会约束随机MPC
提出了一种机会约束随机模型预测控制(SMPC)方法,用于参数不确定性和可加不确定性相结合的建筑气候控制。提出的SMPCap方法可以量化和操纵随机系统状态和输入的均值和协方差。与传统的确定性MPC (DMPC)和最先进的SMPCa相比,其增强的不确定性预测在闭环模拟中显示出更好的热舒适性,其成本是能源使用的最大相对增加分别为21.6%和4.2%。通过将SMPCap策略整合到集成最优控制和设计(IOCD)方法中,说明了其在获得更合适、更稳健的供热系统规模方面的附加价值。通过模拟,与采用DMPC的IOCD方法相比,在不增加热不适的情况下,可以将排屋式单户住宅的尺寸减少33.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Building Performance Simulation
Journal of Building Performance Simulation CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
5.50
自引率
12.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies We welcome building performance simulation contributions that explore the following topics related to buildings and communities: -Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics). -Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems. -Theoretical aspects related to occupants, weather data, and other boundary conditions. -Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid. -Uncertainty, sensitivity analysis, and calibration. -Methods and algorithms for validating models and for verifying solution methods and tools. -Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics. -Techniques for educating and training tool users. -Software development techniques and interoperability issues with direct applicability to building performance simulation. -Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信