Z. Abbas, T. Javed, N. Ali, M. Sajid
{"title":"Flow and Heat Transfer of Maxwell Fluid Over an Exponentially Stretching Sheet: A Non‐similar Solution","authors":"Z. Abbas, T. Javed, N. Ali, M. Sajid","doi":"10.1002/htj.21074","DOIUrl":null,"url":null,"abstract":"In this investigation, the boundary layer flow and heat transfer analysis in a Maxwell fluid over an exponentially continuous moving sheet are studied. The transformed boundary layer equations are solved numerically for a non‐similar solution using a shooting method with the Runge–Kutta algorithm. The purpose of this article is to look into the influence of the Deborah number on the velocity, temperature, and Nusselt number. The obtained results show that an increase in the Deborah number decreases the fluid velocity and boundary layer thickness. On the other hand, it increases the temperature and thermal boundary layer thickness. It is also found that the numerical results are in excellent agreement with the previous existing results for the case of a Newtonian fluid (λ = 0). © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 233–242, 2014; Published online 30 August 2013 in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21074","PeriodicalId":47448,"journal":{"name":"Heat Transfer-Asian Research","volume":"58 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer-Asian Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/htj.21074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
麦克斯韦流体在指数拉伸薄片上的流动和传热:一个非相似的解决方案
本文研究了麦克斯韦流体在指数连续运动薄片上的边界层流动和传热分析。用龙格-库塔算法对变换后的边界层方程进行了非相似解的数值求解。本文的目的是研究底波拉数对速度、温度和努塞尔数的影响。结果表明,随着波底拉数的增加,流体速度和边界层厚度减小。另一方面,它增加了温度和热边界层厚度。在牛顿流体(λ = 0)的情况下,数值结果与先前的结果非常吻合。©2013 Wiley期刊公司。热力学报,43(3):233-242,2014;2013年8月30日在线发表于Wiley在线图书馆(wileyonlinelibrary.com/journal/htj)。DOI 10.1002 / htj.21074
本文章由计算机程序翻译,如有差异,请以英文原文为准。