Flow and Heat Transfer of Maxwell Fluid Over an Exponentially Stretching Sheet: A Non‐similar Solution

IF 4.9
Z. Abbas, T. Javed, N. Ali, M. Sajid
{"title":"Flow and Heat Transfer of Maxwell Fluid Over an Exponentially Stretching Sheet: A Non‐similar Solution","authors":"Z. Abbas, T. Javed, N. Ali, M. Sajid","doi":"10.1002/htj.21074","DOIUrl":null,"url":null,"abstract":"In this investigation, the boundary layer flow and heat transfer analysis in a Maxwell fluid over an exponentially continuous moving sheet are studied. The transformed boundary layer equations are solved numerically for a non‐similar solution using a shooting method with the Runge–Kutta algorithm. The purpose of this article is to look into the influence of the Deborah number on the velocity, temperature, and Nusselt number. The obtained results show that an increase in the Deborah number decreases the fluid velocity and boundary layer thickness. On the other hand, it increases the temperature and thermal boundary layer thickness. It is also found that the numerical results are in excellent agreement with the previous existing results for the case of a Newtonian fluid (λ = 0). © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 233–242, 2014; Published online 30 August 2013 in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21074","PeriodicalId":47448,"journal":{"name":"Heat Transfer-Asian Research","volume":"58 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer-Asian Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/htj.21074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this investigation, the boundary layer flow and heat transfer analysis in a Maxwell fluid over an exponentially continuous moving sheet are studied. The transformed boundary layer equations are solved numerically for a non‐similar solution using a shooting method with the Runge–Kutta algorithm. The purpose of this article is to look into the influence of the Deborah number on the velocity, temperature, and Nusselt number. The obtained results show that an increase in the Deborah number decreases the fluid velocity and boundary layer thickness. On the other hand, it increases the temperature and thermal boundary layer thickness. It is also found that the numerical results are in excellent agreement with the previous existing results for the case of a Newtonian fluid (λ = 0). © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 233–242, 2014; Published online 30 August 2013 in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21074
麦克斯韦流体在指数拉伸薄片上的流动和传热:一个非相似的解决方案
本文研究了麦克斯韦流体在指数连续运动薄片上的边界层流动和传热分析。用龙格-库塔算法对变换后的边界层方程进行了非相似解的数值求解。本文的目的是研究底波拉数对速度、温度和努塞尔数的影响。结果表明,随着波底拉数的增加,流体速度和边界层厚度减小。另一方面,它增加了温度和热边界层厚度。在牛顿流体(λ = 0)的情况下,数值结果与先前的结果非常吻合。©2013 Wiley期刊公司。热力学报,43(3):233-242,2014;2013年8月30日在线发表于Wiley在线图书馆(wileyonlinelibrary.com/journal/htj)。DOI 10.1002 / htj.21074
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信