{"title":"Fault location for power lines with multiple sections","authors":"Y. Gong, M. Mynam, A. Guzman","doi":"10.1109/TDC.2012.6281511","DOIUrl":null,"url":null,"abstract":"Fault location information is critical for operating and maintaining transmission and subtransmission networks. Some of the challenges in calculating accurate fault location include fault resistance, zero-sequence impedance variations, zero-sequence mutual coupling, load, system nonhomogeneity, and power lines composed of multiple sections with considerably different characteristics. This paper presents a fault location method that provides accurate fault location information for power lines with multiple sections. These sections can have different impedance characteristics. The proposed method is suitable for different types of power lines, including overhead lines, underground cables, and composite lines that include both overhead line and underground cable sections. Fault resistance, parallel-line mutual coupling, system nonhomogeneity, and load variations have minimal effect on the accuracy of the proposed fault location method. This paper compares fault location results calculated from event reports that were obtained from the field and from models of real power systems.","PeriodicalId":19873,"journal":{"name":"PES T&D 2012","volume":"83 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PES T&D 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2012.6281511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Fault location information is critical for operating and maintaining transmission and subtransmission networks. Some of the challenges in calculating accurate fault location include fault resistance, zero-sequence impedance variations, zero-sequence mutual coupling, load, system nonhomogeneity, and power lines composed of multiple sections with considerably different characteristics. This paper presents a fault location method that provides accurate fault location information for power lines with multiple sections. These sections can have different impedance characteristics. The proposed method is suitable for different types of power lines, including overhead lines, underground cables, and composite lines that include both overhead line and underground cable sections. Fault resistance, parallel-line mutual coupling, system nonhomogeneity, and load variations have minimal effect on the accuracy of the proposed fault location method. This paper compares fault location results calculated from event reports that were obtained from the field and from models of real power systems.