Performance Analysis of Color Cascading Framework on Two Different Classifiers in Malaria Detection

Cucun Very Angkoso, Y. F. Hendrawan, Ari Kusumaningsih, Rima Tri Wahyuningrum
{"title":"Performance Analysis of Color Cascading Framework on Two Different Classifiers in Malaria Detection","authors":"Cucun Very Angkoso, Y. F. Hendrawan, Ari Kusumaningsih, Rima Tri Wahyuningrum","doi":"10.11591/eecsi.v5.1605","DOIUrl":null,"url":null,"abstract":"Malaria, as a dangerous disease globally, can be reduced its number of victims by finding a method of infection detection that is fast and reliable. Computer-based detection methods make it easier to identify the presence of plasmodium in blood smear images. This kind of methods is suitable for use in locations far from the availability of health experts. This study explores the use of two methods of machine learning on Cascading Color Framework, ie Backpropagation Neural Network and Support Vector Machine. Both methods were used as classifier in detecting malaria infection. From the experimental results it was found that Cascading Color Framework improved the classifier performance for both in Support Vector Machine and Backpropagation Neural Network.","PeriodicalId":20498,"journal":{"name":"Proceeding of the Electrical Engineering Computer Science and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the Electrical Engineering Computer Science and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eecsi.v5.1605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria, as a dangerous disease globally, can be reduced its number of victims by finding a method of infection detection that is fast and reliable. Computer-based detection methods make it easier to identify the presence of plasmodium in blood smear images. This kind of methods is suitable for use in locations far from the availability of health experts. This study explores the use of two methods of machine learning on Cascading Color Framework, ie Backpropagation Neural Network and Support Vector Machine. Both methods were used as classifier in detecting malaria infection. From the experimental results it was found that Cascading Color Framework improved the classifier performance for both in Support Vector Machine and Backpropagation Neural Network.
颜色级联框架在两种不同分类器上的疟疾检测性能分析
疟疾作为一种全球性的危险疾病,可以通过找到一种快速可靠的感染检测方法来减少其受害者人数。基于计算机的检测方法可以更容易地识别血液涂片图像中疟原虫的存在。这种方法适合在远离卫生专家的地方使用。本研究探讨了在层叠色彩框架上使用两种机器学习方法,即反向传播神经网络和支持向量机。两种方法均可作为疟疾感染检测的分类方法。实验结果表明,层叠颜色框架提高了支持向量机和反向传播神经网络分类器的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信