DYNAMICS OF A HIGH-ORDER NONLINEAR FUZZY DIFFERENCE EQUATION

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Changyou Wang, Jiahui Li, Lili Jia
{"title":"DYNAMICS OF A HIGH-ORDER NONLINEAR FUZZY DIFFERENCE EQUATION","authors":"Changyou Wang, Jiahui Li, Lili Jia","doi":"10.11948/20200050","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the following high-order nonlinear fuzzy difference system $ {x_{n + 1}} = \\frac{{A{\\kern 1pt} {x_{n - m}}}}{{B + C{\\kern 1pt} \\prod\\limits_{i = 0}^m {{x_{n - i}}} }}, {\\kern 1pt} {\\kern 1pt} {\\kern 1pt} {\\kern 1pt} {\\kern 1pt} n = 0, 1, 2, \\cdots , $ where $ {x_n} $ is a sequence of positive fuzzy numbers, the parameters and the initial conditions $ {x_{ - m}}, \\;{x_{ - m + 1}}, \\; \\cdots , {x_0} $ are positive fuzzy numbers, $ m $ is non-negative integer. More accurately, our main purpose is to study the existence and uniqueness of the positive solutions, the boundedness of the positive solutions, the instability, local asymptotic stability and global asymptotic stability of the equilibrium points for the above equation by using the iteration method, the inequality skills, the mathematical induction, and the monotone boundedness theorem. Moreover, some numerical examples to the difference system are given to verify our theoretical results.","PeriodicalId":48811,"journal":{"name":"Journal of Applied Analysis and Computation","volume":"92 1","pages":"404-421"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Analysis and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11948/20200050","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

Abstract

This paper is concerned with the following high-order nonlinear fuzzy difference system $ {x_{n + 1}} = \frac{{A{\kern 1pt} {x_{n - m}}}}{{B + C{\kern 1pt} \prod\limits_{i = 0}^m {{x_{n - i}}} }}, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} n = 0, 1, 2, \cdots , $ where $ {x_n} $ is a sequence of positive fuzzy numbers, the parameters and the initial conditions $ {x_{ - m}}, \;{x_{ - m + 1}}, \; \cdots , {x_0} $ are positive fuzzy numbers, $ m $ is non-negative integer. More accurately, our main purpose is to study the existence and uniqueness of the positive solutions, the boundedness of the positive solutions, the instability, local asymptotic stability and global asymptotic stability of the equilibrium points for the above equation by using the iteration method, the inequality skills, the mathematical induction, and the monotone boundedness theorem. Moreover, some numerical examples to the difference system are given to verify our theoretical results.
一类高阶非线性模糊差分方程的动力学
本文研究以下高阶非线性模糊差分系统$ {x_{n + 1}} = \frac{{A{\kern 1pt} {x_{n - m}}}}{{B + C{\kern 1pt} \prod\limits_{i = 0}^m {{x_{n - i}}} }}, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} n = 0, 1, 2, \cdots , $,其中$ {x_n} $为正模糊数序列,参数和初始条件$ {x_{ - m}}, \;{x_{ - m + 1}}, \; \cdots , {x_0} $为正模糊数,$ m $为非负整数。更准确地说,我们的主要目的是利用迭代法、不等式技巧、数学归纳法和单调有界性定理,研究上述方程的正解的存在唯一性、正解的有界性、平衡点的不稳定性、局部渐近稳定性和全局渐近稳定性。最后给出了差分系统的数值算例,验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
9.10%
发文量
45
期刊介绍: The Journal of Applied Analysis and Computation (JAAC) is aimed to publish original research papers and survey articles on the theory, scientific computation and application of nonlinear analysis, differential equations and dynamical systems including interdisciplinary research topics on dynamics of mathematical models arising from major areas of science and engineering. The journal is published quarterly in February, April, June, August, October and December by Shanghai Normal University and Wilmington Scientific Publisher, and issued by Shanghai Normal University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信