On the stability of an equilibrium and the small motions of a rigid body containing a liquid, suspended in a uniform flow

IF 0.7 Q4 MECHANICS
H. Essaouini, P. Capodanno
{"title":"On the stability of an equilibrium and the small motions of a rigid body containing a liquid, suspended in a uniform flow","authors":"H. Essaouini, P. Capodanno","doi":"10.2298/tam181214007e","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a planar motion of a rigid body partially filled with an inviscid liquid and suspended in a uniform horizontal flow. At first, we write the equations of the problem, prove the existence of an equilibrium under a suitable condition and, using a first integral, we give a sufficient condition of stability of this one. Afterwards, we give the equations of the small oscillations of the system about its equilibrium position. Writing these equations in an operatorial form, we prove the existence of a denumerable infinity of complex conjugate pairs of eigenvalues having the infinity as a point of accumulation and obtain the characteristic equation permitting the calculation of the eigenvalues.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam181214007e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a planar motion of a rigid body partially filled with an inviscid liquid and suspended in a uniform horizontal flow. At first, we write the equations of the problem, prove the existence of an equilibrium under a suitable condition and, using a first integral, we give a sufficient condition of stability of this one. Afterwards, we give the equations of the small oscillations of the system about its equilibrium position. Writing these equations in an operatorial form, we prove the existence of a denumerable infinity of complex conjugate pairs of eigenvalues having the infinity as a point of accumulation and obtain the characteristic equation permitting the calculation of the eigenvalues.
关于平衡的稳定性和含有液体的刚体的小运动,悬浮在均匀的流动中
在本文中,我们考虑了一个刚体的平面运动部分充满无粘液体,悬浮在均匀的水平流动中。首先,我们写出了问题的方程,证明了平衡点在适当条件下的存在性,并利用第一次积分给出了平衡点稳定的充分条件。然后,我们给出了系统关于平衡位置的小振荡方程。将这些方程写成运算形式,证明了以无穷远处为累加点的特征值复共轭对的可数无穷存在性,得到了允许计算特征值的特征方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信