{"title":"On the stability of an equilibrium and the small motions of a rigid body containing a liquid, suspended in a uniform flow","authors":"H. Essaouini, P. Capodanno","doi":"10.2298/tam181214007e","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a planar motion of a rigid body partially filled with an inviscid liquid and suspended in a uniform horizontal flow. At first, we write the equations of the problem, prove the existence of an equilibrium under a suitable condition and, using a first integral, we give a sufficient condition of stability of this one. Afterwards, we give the equations of the small oscillations of the system about its equilibrium position. Writing these equations in an operatorial form, we prove the existence of a denumerable infinity of complex conjugate pairs of eigenvalues having the infinity as a point of accumulation and obtain the characteristic equation permitting the calculation of the eigenvalues.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam181214007e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a planar motion of a rigid body partially filled with an inviscid liquid and suspended in a uniform horizontal flow. At first, we write the equations of the problem, prove the existence of an equilibrium under a suitable condition and, using a first integral, we give a sufficient condition of stability of this one. Afterwards, we give the equations of the small oscillations of the system about its equilibrium position. Writing these equations in an operatorial form, we prove the existence of a denumerable infinity of complex conjugate pairs of eigenvalues having the infinity as a point of accumulation and obtain the characteristic equation permitting the calculation of the eigenvalues.
期刊介绍:
Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.