Influence of sample thickness and cross-sectional area on flexoelectric effect under one-dimensional impact

IF 1.3 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
Taotao Hu, Yu Li, Peng Tu
{"title":"Influence of sample thickness and cross-sectional area on flexoelectric effect under one-dimensional impact","authors":"Taotao Hu, Yu Li, Peng Tu","doi":"10.1080/07315171.2022.2076471","DOIUrl":null,"url":null,"abstract":"Abstract The shock wave generates the strain gradient and consequent electric polarization in samples due to the flexoelectric effect during the impact process. At present, some scholars have studied the influence law of different impact velocities, but the influence of different thickness and cross-sectional area of samples on flexoelectric effect is still blank. In this letter, we have studied the voltage variation of barium titanate samples with different thickness and cross-sectional area under a certain impact velocity. The results show that the maximum voltage value caused by flexoelectric effect increases as the thickness increases, which is basically in positive proportion; it decreases with the increase of diameter, which is in inverse proportion. This research will lay a theoretical foundation for the fabrication of flexoelectricity sensor.","PeriodicalId":50451,"journal":{"name":"Ferroelectrics Letters Section","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferroelectrics Letters Section","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/07315171.2022.2076471","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The shock wave generates the strain gradient and consequent electric polarization in samples due to the flexoelectric effect during the impact process. At present, some scholars have studied the influence law of different impact velocities, but the influence of different thickness and cross-sectional area of samples on flexoelectric effect is still blank. In this letter, we have studied the voltage variation of barium titanate samples with different thickness and cross-sectional area under a certain impact velocity. The results show that the maximum voltage value caused by flexoelectric effect increases as the thickness increases, which is basically in positive proportion; it decreases with the increase of diameter, which is in inverse proportion. This research will lay a theoretical foundation for the fabrication of flexoelectricity sensor.
一维冲击下试样厚度和截面积对挠曲电效应的影响
摘要冲击波在冲击过程中由于挠曲电效应在试样中产生应变梯度和相应的电极化。目前已有学者研究了不同冲击速度的影响规律,但不同试样厚度和横截面积对挠曲电效应的影响仍是空白。在这封信中,我们研究了不同厚度和横截面积的钛酸钡样品在一定冲击速度下的电压变化。结果表明:挠曲电效应引起的最大电压值随厚度的增加而增大,且基本成正比;它随直径的增大而减小,两者成反比。本研究为柔性电传感器的研制奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ferroelectrics Letters Section
Ferroelectrics Letters Section 物理-物理:凝聚态物理
CiteScore
1.10
自引率
0.00%
发文量
1
审稿时长
4.8 months
期刊介绍: Ferroelectrics Letters is a separately published section of the international journal Ferroelectrics. Both sections publish theoretical, experimental and applied papers on ferroelectrics and related materials, including ferroelastics, ferroelectric ferromagnetics, electrooptics, piezoelectrics, pyroelectrics, nonlinear dielectrics, polymers and liquid crystals. Ferroelectrics Letters permits the rapid publication of important, quality, short original papers on the theory, synthesis, properties and applications of ferroelectrics and related materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信