Testing harbour patrol and interception policies using particle-swarm-based learning of cooperative behavior

T. Flanagan, C. Thornton, J. Denzinger
{"title":"Testing harbour patrol and interception policies using particle-swarm-based learning of cooperative behavior","authors":"T. Flanagan, C. Thornton, J. Denzinger","doi":"10.1109/CISDA.2009.5356561","DOIUrl":null,"url":null,"abstract":"We present a general scheme for testing multiagent systems, respectively policies used by them, for unwanted emergent behavior using learning of cooperative behavior via particle swarm systems. By using particle swarm systems in this setting, we are able to create agents interacting/attacking the tested agents that can use parameterised high-level actions. We also can evaluate the quality of an attack using several measures that can be prioritised and used in a multi-objective manner in the search. This solves some general problems of other testing approaches using learning. We instantiate this general scheme to test harbour patrol and interception policies for two Canadian harbours, showing that our approach is able to find problems in these policies.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"74 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We present a general scheme for testing multiagent systems, respectively policies used by them, for unwanted emergent behavior using learning of cooperative behavior via particle swarm systems. By using particle swarm systems in this setting, we are able to create agents interacting/attacking the tested agents that can use parameterised high-level actions. We also can evaluate the quality of an attack using several measures that can be prioritised and used in a multi-objective manner in the search. This solves some general problems of other testing approaches using learning. We instantiate this general scheme to test harbour patrol and interception policies for two Canadian harbours, showing that our approach is able to find problems in these policies.
使用基于粒子群的合作行为学习测试港口巡逻和拦截策略
我们提出了一种测试多智能体系统的通用方案,分别使用它们使用的策略,通过粒子群系统学习合作行为来测试不必要的紧急行为。通过在此设置中使用粒子群系统,我们能够创建交互/攻击可以使用参数化高级操作的被测试代理的代理。我们还可以使用几种方法来评估攻击的质量,这些方法可以在搜索中以多目标的方式进行优先排序和使用。这解决了使用学习的其他测试方法的一些一般问题。我们实例化了这个通用方案来测试两个加拿大港口的港口巡逻和拦截政策,表明我们的方法能够发现这些政策中的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信