A hierarchical transcriptional network controls appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae

Míriam Osés-Ruiz, Magdalena Martin-Urdiroz, D. Soanes, M. J. Kershaw, Neftaly Cruz-Mireles, G. Valdovinos-Ponce, Camilla Molinari, George R. Littlejohn, P. Derbyshire, Frank L. H. Menke, B. Valent, N. Talbot
{"title":"A hierarchical transcriptional network controls appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae","authors":"Míriam Osés-Ruiz, Magdalena Martin-Urdiroz, D. Soanes, M. J. Kershaw, Neftaly Cruz-Mireles, G. Valdovinos-Ponce, Camilla Molinari, George R. Littlejohn, P. Derbyshire, Frank L. H. Menke, B. Valent, N. Talbot","doi":"10.1101/2020.02.05.936203","DOIUrl":null,"url":null,"abstract":"Rice blast is a pervasive and devastating disease that threatens rice production across the world. In spite of its importance to global food security, however, the underlying biology of plant infection by the blast fungus Magnaporthe oryzae remains poorly understood. In particular, it is unclear how the fungus elaborates a specialised infection cell, the appressorium, in response to surface signals from the rice leaf. Here, we report the identification of a network of temporally co-regulated transcription factors that act downstream of the Pmk1 mitogen-activated protein kinase pathway to regulate gene expression during appressorium-mediated plant infection. We have functionally characterised this network of transcription factors and demonstrated the operation of a hierarchical transcriptional control system. We show that this tiered regulatory mechanism involves Pmk1-dependent phosphorylation of the Hox7 homeobox transcription factor, which represses hyphal-associated gene expression and simultaneously induces major physiological changes required for appressorium development, including cell cycle arrest, autophagic cell death, turgor generation and melanin biosynthesis. Mst12 then regulates gene functions involved in septin-dependent cytoskeletal re-organisation, polarised exocytosis and effector gene expression necessary for plant tissue invasion.","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.02.05.936203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Rice blast is a pervasive and devastating disease that threatens rice production across the world. In spite of its importance to global food security, however, the underlying biology of plant infection by the blast fungus Magnaporthe oryzae remains poorly understood. In particular, it is unclear how the fungus elaborates a specialised infection cell, the appressorium, in response to surface signals from the rice leaf. Here, we report the identification of a network of temporally co-regulated transcription factors that act downstream of the Pmk1 mitogen-activated protein kinase pathway to regulate gene expression during appressorium-mediated plant infection. We have functionally characterised this network of transcription factors and demonstrated the operation of a hierarchical transcriptional control system. We show that this tiered regulatory mechanism involves Pmk1-dependent phosphorylation of the Hox7 homeobox transcription factor, which represses hyphal-associated gene expression and simultaneously induces major physiological changes required for appressorium development, including cell cycle arrest, autophagic cell death, turgor generation and melanin biosynthesis. Mst12 then regulates gene functions involved in septin-dependent cytoskeletal re-organisation, polarised exocytosis and effector gene expression necessary for plant tissue invasion.
水稻稻瘟病菌侵染稻瘟病菌时,一个分级转录网络控制着附着胞介导的植物侵染
稻瘟病是一种普遍存在的破坏性疾病,威胁着世界各地的水稻生产。然而,尽管稻瘟病菌对全球粮食安全具有重要意义,但对稻瘟病菌侵染植物的潜在生物学机制仍知之甚少。特别是,目前还不清楚这种真菌是如何形成一种特殊的感染细胞,即附着胞,以响应水稻叶片的表面信号。在这里,我们报告了一个暂时共调节的转录因子网络,这些转录因子作用于Pmk1丝裂原激活蛋白激酶途径的下游,在附着胞介导的植物感染过程中调节基因表达。我们已经在功能上描述了这种转录因子网络,并演示了分层转录控制系统的操作。我们发现这种分层调节机制涉及pmk1依赖的Hox7同源盒转录因子的磷酸化,该磷酸化抑制菌丝相关基因的表达,同时诱导附着胞发育所需的主要生理变化,包括细胞周期阻滞、自噬细胞死亡、肿胀产生和黑色素生物合成。然后,Mst12调节与septin依赖性细胞骨架重组、极化胞吐和植物组织入侵所需的效应基因表达有关的基因功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信