M. Marufuzzaman, Teresa Tumbraegel, L. F. Rahman, L. Sidek
{"title":"A machine learning approach to predict the activity of smart home inhabitant","authors":"M. Marufuzzaman, Teresa Tumbraegel, L. F. Rahman, L. Sidek","doi":"10.3233/AIS-210604","DOIUrl":null,"url":null,"abstract":"A smart home inhabitant performs a unique pattern or sequence of tasks repeatedly. Thus, a machine learning approach will be required to build an intelligent network of home appliances, and the algorithm should respond quickly to execute the decision. This study proposes a decision tree-based machine learning approach for predicting the activities using different appliances such as state, locations and time. A noise filter is employed to remove unwanted data and generate task sequences, and dual state properties of a home appliance are utilized to extract episodes from the sequence. An incremental decision tree approach was taken to reduce execution time. The algorithm was tested using a well-known smart home dataset from MavLab. The experimental results showed that the algorithm successfully extracted 689 predictions and their location at 90% accuracy, and the total execution time was 94 s, which is less than that of existing methods. A hardware prototype was designed using Raspberry Pi 2 B to validate the proposed prediction system. The general-purpose input-output (GPIO) interfaces of Raspberry Pi 2 B were used to communicate with the prototype testbed and showed that the algorithm successfully predicted the next activities.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"41 1","pages":"271-283"},"PeriodicalIF":1.8000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/AIS-210604","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 9
Abstract
A smart home inhabitant performs a unique pattern or sequence of tasks repeatedly. Thus, a machine learning approach will be required to build an intelligent network of home appliances, and the algorithm should respond quickly to execute the decision. This study proposes a decision tree-based machine learning approach for predicting the activities using different appliances such as state, locations and time. A noise filter is employed to remove unwanted data and generate task sequences, and dual state properties of a home appliance are utilized to extract episodes from the sequence. An incremental decision tree approach was taken to reduce execution time. The algorithm was tested using a well-known smart home dataset from MavLab. The experimental results showed that the algorithm successfully extracted 689 predictions and their location at 90% accuracy, and the total execution time was 94 s, which is less than that of existing methods. A hardware prototype was designed using Raspberry Pi 2 B to validate the proposed prediction system. The general-purpose input-output (GPIO) interfaces of Raspberry Pi 2 B were used to communicate with the prototype testbed and showed that the algorithm successfully predicted the next activities.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.