A machine learning approach to predict the activity of smart home inhabitant

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
M. Marufuzzaman, Teresa Tumbraegel, L. F. Rahman, L. Sidek
{"title":"A machine learning approach to predict the activity of smart home inhabitant","authors":"M. Marufuzzaman, Teresa Tumbraegel, L. F. Rahman, L. Sidek","doi":"10.3233/AIS-210604","DOIUrl":null,"url":null,"abstract":"A smart home inhabitant performs a unique pattern or sequence of tasks repeatedly. Thus, a machine learning approach will be required to build an intelligent network of home appliances, and the algorithm should respond quickly to execute the decision. This study proposes a decision tree-based machine learning approach for predicting the activities using different appliances such as state, locations and time. A noise filter is employed to remove unwanted data and generate task sequences, and dual state properties of a home appliance are utilized to extract episodes from the sequence. An incremental decision tree approach was taken to reduce execution time. The algorithm was tested using a well-known smart home dataset from MavLab. The experimental results showed that the algorithm successfully extracted 689 predictions and their location at 90% accuracy, and the total execution time was 94 s, which is less than that of existing methods. A hardware prototype was designed using Raspberry Pi 2 B to validate the proposed prediction system. The general-purpose input-output (GPIO) interfaces of Raspberry Pi 2 B were used to communicate with the prototype testbed and showed that the algorithm successfully predicted the next activities.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"41 1","pages":"271-283"},"PeriodicalIF":1.8000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/AIS-210604","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 9

Abstract

A smart home inhabitant performs a unique pattern or sequence of tasks repeatedly. Thus, a machine learning approach will be required to build an intelligent network of home appliances, and the algorithm should respond quickly to execute the decision. This study proposes a decision tree-based machine learning approach for predicting the activities using different appliances such as state, locations and time. A noise filter is employed to remove unwanted data and generate task sequences, and dual state properties of a home appliance are utilized to extract episodes from the sequence. An incremental decision tree approach was taken to reduce execution time. The algorithm was tested using a well-known smart home dataset from MavLab. The experimental results showed that the algorithm successfully extracted 689 predictions and their location at 90% accuracy, and the total execution time was 94 s, which is less than that of existing methods. A hardware prototype was designed using Raspberry Pi 2 B to validate the proposed prediction system. The general-purpose input-output (GPIO) interfaces of Raspberry Pi 2 B were used to communicate with the prototype testbed and showed that the algorithm successfully predicted the next activities.
一种预测智能家居居民活动的机器学习方法
智能家居用户重复执行一种独特的模式或任务序列。因此,将需要机器学习方法来构建智能家电网络,并且算法应该快速响应以执行决策。本研究提出了一种基于决策树的机器学习方法,用于预测使用不同设备(如状态、位置和时间)的活动。使用噪声滤波器去除不需要的数据并生成任务序列,并利用家电的双状态属性从序列中提取情节。采用增量决策树方法来减少执行时间。该算法使用来自MavLab的知名智能家居数据集进行了测试。实验结果表明,该算法以90%的准确率成功提取了689个预测及其位置,总执行时间为94 s,比现有方法要短。利用树莓派2b设计了一个硬件原型来验证所提出的预测系统。利用树莓派2b的通用输入输出(GPIO)接口与原型测试平台进行通信,结果表明该算法成功地预测了下一步活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ambient Intelligence and Smart Environments
Journal of Ambient Intelligence and Smart Environments COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
4.30
自引率
17.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信