{"title":"A SPARSE ENCODING SYMMETRIC MACHINES PRE-TRAINING FOR TEMPORAL DEEP BELIEF NETWORKS FOR MOTION ANALYSIS AND SYNTHESIS","authors":"M. N. Shoumi, M. I. Fanany","doi":"10.5281/ZENODO.34149","DOIUrl":null,"url":null,"abstract":"We present a modified Temporal Deep Belief Networks (TDBN) for human motion analysis and synthesis by incorporating Sparse Encoding Symmetric Machines (SESM) improvement on its pre-training. SESM consisted of two important terms: regularization and sparsity. In this paper, we measure the effect of these two terms on the smoothness of synthesized (or generated) motion. The smoothness is measured as the standard deviation of five bones movements with three motion transitions. We also address how these two terms influence the free energy and reconstruction error profiles during pre-training of the Restricted Boltzmann Machines (RBM) layers and the Conditional RBM (CRBM) layers. For this purpose, we compare gait transitions by bifurcation experiments using four different TDBN settings: original TDBN; modified-TDBN(R): a TDBN with only regularization constraint; modified-TDBN(S): a TDBN with only sparsity constraint; and modified-TDBN(R+S): a TDBN with regularization plus sparsity constraints. These experiments shows that the modified-TDBN(R+S) reaches lower energy faster in RBM pre-training and reach lower reconstruction error in the CRBM training. Even though the smoothness of the synthesized motion from the modified-TDBN approaches is slightly less smooth than the original TDBN, they are more responsive to the action command to change a motion (from run to walk or vice versa) while preserving the smoothness during motion transitions without incurring much overhead computation time.","PeriodicalId":53606,"journal":{"name":"Journal of Theoretical and Applied Information Technology","volume":"1 1","pages":"86-93"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Applied Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.34149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4
Abstract
We present a modified Temporal Deep Belief Networks (TDBN) for human motion analysis and synthesis by incorporating Sparse Encoding Symmetric Machines (SESM) improvement on its pre-training. SESM consisted of two important terms: regularization and sparsity. In this paper, we measure the effect of these two terms on the smoothness of synthesized (or generated) motion. The smoothness is measured as the standard deviation of five bones movements with three motion transitions. We also address how these two terms influence the free energy and reconstruction error profiles during pre-training of the Restricted Boltzmann Machines (RBM) layers and the Conditional RBM (CRBM) layers. For this purpose, we compare gait transitions by bifurcation experiments using four different TDBN settings: original TDBN; modified-TDBN(R): a TDBN with only regularization constraint; modified-TDBN(S): a TDBN with only sparsity constraint; and modified-TDBN(R+S): a TDBN with regularization plus sparsity constraints. These experiments shows that the modified-TDBN(R+S) reaches lower energy faster in RBM pre-training and reach lower reconstruction error in the CRBM training. Even though the smoothness of the synthesized motion from the modified-TDBN approaches is slightly less smooth than the original TDBN, they are more responsive to the action command to change a motion (from run to walk or vice versa) while preserving the smoothness during motion transitions without incurring much overhead computation time.
期刊介绍:
Journal of Theoretical and Applied Information Technology published since 2005 (E-ISSN 1817-3195 / ISSN 1992-8645) is an open access International refereed research publishing journal with a focused aim on promoting and publishing original high quality research dealing with theoretical and scientific aspects in all disciplines of Information Technology. JATIT is an international scientific research journal focusing on issues in information technology research. A large number of manuscript inflows, reflects its popularity and the trust of world''s research community. JATIT is indexed with major indexing and abstracting organizations and is published in both electronic and print format.